The OEIS is supported by the many generous donors to the OEIS Foundation.


(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A008292 Triangle of Eulerian numbers T(n,k) (n >= 1, 1 <= k <= n) read by rows. 398
1, 1, 1, 1, 4, 1, 1, 11, 11, 1, 1, 26, 66, 26, 1, 1, 57, 302, 302, 57, 1, 1, 120, 1191, 2416, 1191, 120, 1, 1, 247, 4293, 15619, 15619, 4293, 247, 1, 1, 502, 14608, 88234, 156190, 88234, 14608, 502, 1, 1, 1013, 47840, 455192, 1310354, 1310354, 455192, 47840, 1013, 1 (list; table; graph; refs; listen; history; text; internal format)



The indexing used here follows that given in the classic books by Riordan and Comtet. For two other versions see A173018 and A123125. - N. J. A. Sloane, Nov 21 2010

Coefficients of Eulerian polynomials. Number of permutations of n objects with k-1 rises. Number of increasing rooted trees with n+1 nodes and k leaves.

T(n,k) = number of permutations of [n] with k runs. T(n,k) = number of permutations of [n] requiring k readings (see the Knuth reference). T(n,k) = number of permutations of [n] having k distinct entries in its inversion table. - Emeric Deutsch, Jun 09 2004

T(n,k) = number of ways to write the Coxeter element s_{e1}s_{e1-e2}s_{e2-e3}s_{e3-e4}...s_{e_{n-1}-e_n} of the reflection group of type B_n, using s_{e_k} and as few reflections of the form s_{e_i+e_j}, where i = 1, 2, ..., n and j is not equal to i, as possible. - Pramook Khungurn (pramook(AT)mit.edu), Jul 07 2004

Subtriangle for k>=1 and n>=1 of triangle A123125. - Philippe Deléham, Oct 22 2006

T(n,k)/n! also represents the n-dimensional volume of the portion of the n-dimensional hypercube cut by the (n-1)-dimensional hyperplanes x_1 + x_2 + ... x_n = k, x_1 + x_2 + ... x_n = k-1; or, equivalently, it represents the probability that the sum of n independent random variables with uniform distribution between 0 and 1 is between k-1 and k. - Stefano Zunino, Oct 25 2006

[E(.,t)/(1-t)]^n = n!*Lag[n,-P(.,t)/(1-t)] and [-P(.,t)/(1-t)]^n = n!*Lag[n, E(.,t)/(1-t)] umbrally comprise a combinatorial Laguerre transform pair, where E(n,t) are the Eulerian polynomials and P(n,t) are the polynomials in A131758. - Tom Copeland, Sep 30 2007

From Tom Copeland, Oct 07 2008: (Start)

G(x,t) = 1/(1 + (1-exp(x*t))/t) = 1 + 1*x + (2+t)*x^2/2! + (6+6*t+t^2)*x^3/3! + ... gives row polynomials for A090582, the reverse f-polynomials for the permutohedra (see A019538).

G(x,t-1) = 1 + 1*x + (1+t)*x^2/2! + (1+4*t+t^2)*x^3/3! + ... gives row polynomials for A008292, the h-polynomials for permutohedra (Postnikov et al.).

G((t+1)*x, -1/(t+1)) = 1 + (1+t)*x + (1+3*t+2*t^2)*x^2/2! + ... gives row polynomials for A028246.


A subexceedant function f on [n] is a map f:[n] -> [n] such that 1 <= f(i) <= i for all i, 1 <= i <= n. T(n,k) equals the number of subexceedant functions f of [n] such that the image of f has cardinality k [Mantaci & Rakotondrajao]. Example T(3,2) = 4: if we identify a subexceedant function f with the word f(1)f(2)...f(n) then the subexceedant functions on [3] are 111, 112, 113, 121, 122 and 123 and four of these functions have an image set of cardinality 2. - Peter Bala, Oct 21 2008

Further to the comments of Tom Copeland above, the n-th row of this triangle is the h-vector of the simplicial complex dual to a permutohedron of type A_(n-1). The corresponding f-vectors are the rows of A019538. For example, 1 + 4*x + x^2 = y^2 + 6*y + 6 and 1 + 11*x + 11*x^2 + x^3 = y^3 + 14*y^2 + 36*y + 24, where x = y + 1, give [1,6,6] and [1,14,36,24] as the third and fourth rows of A019538. The Hilbert transform of this triangle (see A145905 for the definition) is A047969. See A060187 for the triangle of Eulerian numbers of type B (the h-vectors of the simplicial complexes dual to permutohedra of type B). See A066094 for the array of h-vectors of type D. For tables of restricted Eulerian numbers see A144696 - A144699. - Peter Bala, Oct 26 2008

For a natural refinement of A008292 with connections to compositional inversion and iterated derivatives, see A145271. - Tom Copeland, Nov 06 2008

The polynomials E(z,n) = numerator(Sum_{k>=1} (-1)^(n+1)*k^n*z^(k-1)) for n >=1 lead directly to the triangle of Eulerian numbers. - Johannes W. Meijer, May 24 2009

From Walther Janous (walther.janous(AT)tirol.com), Nov 01 2009: (Start)

The (Eulerian) polynomials e(n,x) = Sum_{k=0..n-1} T(n,k+1)*x^k turn out to be also the numerators of the closed-form expressions of the infinite sums:

S(p,x) = Sum_{j>=0} (j+1)^p*x^j, that is

S(p,x) = e(p,x)/(1-x)^(p+1), whenever |x| < 1 and p is a positive integer.

(Note the inconsistent use of T(n,k) in the section listing the formula section. I adhere tacitly to the first one.) (End)

If n is an odd prime, then all numbers of the (n-2)-th and (n-1)-th rows are in the progression k*n+1. - Vladimir Shevelev, Jul 01 2011

The Eulerian triangle is an element of the formula for the r-th successive summation of Sum_{k=1..n} k^j which appears to be Sum_{k=1..n} T(j,k-1) * binomial(j-k+n+r, j+r). - Gary Detlefs, Nov 11 2011

Li and Wong show that T(n,k) counts the combinatorially inequivalent star polygons with n+1 vertices and sum of angles (2*k-n-1)*Pi. An equivalent formulation is: define the total sign change S(p) of a permutation p in the symmetric group S_n to be equal to Sum_{i=1..n} sign(p(i)-p(i+1)), where we take p(n+1) = p(1). T(n,k) gives the number of permutations q in S_(n+1) with q(1) = 1 and S(q) = 2*k-n-1. For example, T(3,2) = 4 since in S_4 the permutations (1243), (1324), (1342) and (1423) have total sign change 0. - Peter Bala, Dec 27 2011

Xiong, Hall and Tsao refer to Riordan and mention that a traditional Eulerian number A(n,k) is the number of permutations of (1,2...n) with k weak exceedances. - Susanne Wienand, Aug 25 2014

Connections to algebraic geometry/topology and characteristic classes are discussed in the Buchstaber and Bunkova, the Copeland, the Hirzebruch, the Lenart and Zainoulline, the Losev and Manin, and the Sheppeard links; to the Grassmannian, in the Copeland, the Farber and Postnikov, the Sheppeard, and the Williams links; and to compositional inversion and differential operators, in the Copeland and the Parker links. - Tom Copeland, Oct 20 2015

The bivariate e.g.f. noted in the formulas is related to multiplying edges in certain graphs discussed in the Aluffi-Marcolli link. See p. 42. - Tom Copeland, Dec 18 2016

Distribution of left children in treeshelves is given by a shift of the Eulerian numbers. Treeshelves are ordered binary (0-1-2) increasing trees where every child is connected to its parent by a left or a right link. See A278677, A278678 or A278679 for more definitions and examples. - Sergey Kirgizov, Dec 24 2016

The row polynomial P(n, x) = Sum_{k=1..n} T(n, k)*x^k appears in the numerator of the o.g.f. G(n, x) = Sum_{m>=0} S(n, m)*x^m with S(n, m) = Sum_{j=0..m} j^n for n >= 1 as G(n, x) = Sum_{k=1..n} P(n, x)/(1 - x)^(n+2) for n >= 0 (with 0^0=1). See also triangle A131689 with a Mar 31 2017 comment for a rewritten form. For the e.g.f see A028246 with a Mar 13 2017 comment. - Wolfdieter Lang, Mar 31 2017.

For relations to Ehrhart polynomials, volumes of polytopes, polylogarithms, the Todd operator, and other special functions, polynomials, and sequences, see A131758 and the references therein. - Tom Copeland, Jun 20 2017

For relations to values of the Riemann zeta function at integral arguments, see A131758 and the Dupont reference. - Tom Copeland, Mar 19 2018

Normalized volumes of the hypersimplices, attributed to Laplace. (Cf. the De Loera et al. reference, p. 327.) - Tom Copeland, Jun 25 2018


Mohammad K. Azarian, Geometric Series, Problem 329, Mathematics and Computer Education, Vol. 30, No. 1, Winter 1996, p. 101. Solution published in Vol. 31, No. 2, Spring 1997, pp. 196-197.

Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 106.

L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 243.

F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 260.

R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 254; 2nd. ed., p. 268.[Worpitzky's identity (6.37)]

D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, 1998, Vol. 3, p. 47 (exercise 5.1.4 Nr. 20) and p. 605 (solution).

Meng Li and Ron Goldman. "Limits of sums for binomial and Eulerian numbers and their associated distributions." Discrete Mathematics 343.7 (2020): 111870.

Anthony Mendes and Jeffrey Remmel, Generating functions from symmetric functions, Preliminary version of book, available from Jeffrey Remmel's home page http://math.ucsd.edu/~remmel/

K. Mittelstaedt, A stochastic approach to Eulerian numbers, Amer. Math. Mnthly, 127:7 (2020), 618-628.

T. K. Petersen, Eulerian Numbers, Birkhauser, 2015.

J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 215.

R. Sedgewick and P. Flajolet, An Introduction to the Analysis of Algorithms, Addison-Wesley, Reading, MA, 1996.

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Figure M3416, Academic Press, 1995.

H. S. Wall, Analytic Theory of Continued Fractions, Chelsea, 1973, see p. 208.

D. B. West, Combinatorial Mathematics, Cambridge, 2021, p. 101.


T. D. Noe, Rows 1 to 100 of triangle, flattened.

V. E. Adler, Set partitions and integrable hierarchies, arXiv:1510.02900 [nlin.SI], 2015.

Takashi Agoh, On Generalized Euler Numbers and Polynomials Related to Values of the Lerch Zeta Function, Integers (2020) Vol. 20, Article A5.

P. Aluffi and M. Marcolli, Feynman motives and deletion-contraction, arXiv:0907.3225 [math-ph], 2009.

E. Banaian, S. Butler, C. Cox, J. Davis, J. Landgraf and S. Ponce, A generalization of Eulerian numbers via rook placements, arXiv:1508.03673 [math.CO], 2015.

J. Fernando Barbero G., Jesús Salas, and Eduardo J. S. Villaseñor, Bivariate Generating Functions for a Class of Linear Recurrences. I. General Structure, arXiv:1307.2010 [math.CO], 2013.

J. F. Barbero G., J. Salas and E. J. S. Villaseñor, Bivariate Generating Functions for a Class of Linear Recurrences. II. Applications, arXiv:1307.5624 [math.CO], 2013.

Jean-Luc Baril, Sergey Kirgizov, and Vincent Vajnovszki, Patterns in treeshelves, arXiv:1611.07793 [cs.DM], 2016.

Paul Barry, Eulerian polynomials as moments, via exponential Riordan arrays, arXiv preprint arXiv:1105.3043 [math.CO], 2011, J. Int. Seq. 14 (2011) # 11.9.5.

Paul Barry, Combinatorial polynomials as moments, Hankel transforms and exponential Riordan arrays, arXiv:1105.3044 [math.CO], 2011.

Paul Barry, On a transformation of Riordan moment sequences, arXiv:1802.03443 [math.CO], 2018.

Paul Barry, Three Études on a sequence transformation pipeline, arXiv:1803.06408 [math.CO], 2018.

Paul Barry, Generalized Eulerian Triangles and Some Special Production Matrices, arXiv:1803.10297 [math.CO], 2018.

Paul Barry, The Gamma-Vectors of Pascal-like Triangles Defined by Riordan Arrays, arXiv:1804.05027 [math.CO], 2018.

D. Barsky, Analyse p-adique et suites classiques de nombres, Sem. Loth. Comb. B05b (1981) 1-21.

H. Belbachir, M. Rahmani, and B. Sury, Sums Involving Moments of Reciprocals of Binomial Coefficients, J. Int. Seq. 14 (2011) #11.6.6.

Hacene Belbachir, Mourad Rahmani and B. Sury, Alternating Sums of the Reciprocals of Binomial Coefficients, Journal of Integer Sequences, Vol. 15 (2012), #12.2.8.

Edward A. Bender, Central and local limit theorems applied to asymptotic enumeration Journal of Combinatorial Theory, Series A, 15(1) (1973), 91-111. See Example 5.3.

F. Bergeron, Ph. Flajolet and B. Salvy, Varieties of Increasing Trees, Lecture Notes in Computer Science vol. 581, ed. J.-C. Raoult, Springer 1992, pp. 24-48.

V. Buchstaber and E. Bunkova, Elliptic formal group laws, integral Hirzebruch genera and Krichever genera, arXiv:1010.0944 [math-ph], 2010, p. 35.

Michael Bukata, Ryan Kulwicki, Nicholas Lewandowski, Lara Pudwell, Jacob Roth, and Teresa Wheeland, Distributions of Statistics over Pattern-Avoiding Permutations, arXiv:1812.07112 [math.CO], 2018.

F. Cachazo, S. He, and E. Y. Yuan, Scattering in Three Dimensions from Rational Maps, arXiv:1306.2962 [hep-th], 2013.

F. Cachazo, S. Mizera, and G. Zhang, Scattering equations: Real solutions and particles on a line, arXiv:1609.00008 [hep-th], 2016.

David Callan, Problem 498, The College Mathematics Journal, Vol. 24, No. 2 (Mar., 1993), pp. 183-190 (8 pages).

David Callan, Shi-Mei Ma, and Toufik Mansour, Some Combinatorial Arrays Related to the Lotka-Volterra System, Electronic Journal of Combinatorics, Volume 22, Issue 2 (2015), Paper #P2.22.

Naiomi Cameron and J. E. McLeod, Returns and Hills on Generalized Dyck Paths, Journal of Integer Sequences, Vol. 19, 2016, #16.6.1.

L. Carlitz, Eulerian numbers and operators, Collectanea Mathematica 24:2 (1973), pp. 175-200.

Leonard Carlitz, Permutations, sequences and special functions, SIAM Review 17, no. 2 (1975): 298-322.

L. Carlitz et al., Permutations and sequences with repetitions by number of increases, J. Combin. Theory, 1 (1966), 350-374, p. 351.

L. Carlitz, D. C. Kurtz, R. Scoville and O. P. Stackelberg, Asymptotic properties of Eulerian numbers, Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 23(1), 47-54 (1972).

Raphaël Cerf and Joseba Dalmau, The quasispecies distribution, arXiv:1609.05738 [q-bio.PE], 2016.

Mircea I. Cirnu, Determinantal formulas for sum of generalized arithmetic-geometric series, Boletin de la Asociacion Matematica Venezolana, Vol. XVIII, No. 1 (2011), p. 13.

Tom Copeland, The Elliptic Lie Triad: Riccati and KdV Equations, Infinigens, and Elliptic Genera, 2015.

Tom Copeland, Reciprocity and Umbral Witchcraft: An Eve with Stirling, Bernoulli, Archimedes, Euler, Laguerre, and Worpitzky, 2020.

J. A. De Loera, J. Rambau, and F. Santos, Triangulations: Structures for Algorithms and Applications,  Algorithms and Computation in Mathematics, Vol. 25, Springer-Verlag, 2010.

Colin Defant, Troupes, Cumulants, and Stack-Sorting, arXiv:2004.11367 [math.CO], 2020.

J. Desarmenien and D. Foata, The signed Eulerian Numbers

J. Desarmenien and D. Foata, The signed Eulerian numbers, Discrete Math. 99 (1992), no. 1-3, 49-58.

E. Deutsch and B. E. Sagan, Congruences for Catalan and Motzkin numbers and related sequences, arXiv:math/0407326 [math.CO], 2004; J. Num. Theory 117 (2006), 191-215.

D. Dominici, Nested derivatives: A simple method for computing series expansions of inverse functions. arXiv:math/0501052v2 [math.CA], 2005.

B. Drake, An inversion theorem for labeled trees and some limits of areas under lattice paths Thesis, Brandeis Univ., Aug. 2008.

C. Dupont, Odd zeta motive and linear forms in odd zeta values, arXiv:1601.00950 [math.AG], 2016.

A. Dzhumadil'daev and D. Yeliussizov, Power sums of binomial coefficients, Journal of Integer Sequences, 16 (2013), Article 13.1.6.

R. Ehrenborg, M. Readdy, and E. Steingrímsson, Mixed Volumes and Slices of the Cube, J Comb. Theory, Series A 81, Issue 1, Jan. 1998, 121-126.

M. Farber and A. Postnikov, Arrangements of equal minors in the positive Grassmannian, arXiv preprint arXiv:1502.01434 [math.CO], 2015.

Joseph A. Farrow, A Monte Carlo Approach to the 4D Scattering Equations, arXiv:1806.02732 [hep-th], 2018.

FindStat - Combinatorial Statistic Finder, The number of descents of a permutation, The number of exceedances (also excedences) of a permutation, and The number of weak exceedances (also weak excedences) of a permutation

D. Foata, Distributions eulériennes et mahoniennes sur le groupe des permutations, pp. 27-49 of M. Aigner, editor, Higher Combinatorics, Reidel, Dordrecht, Holland, 1977.

D. Foata and M. Schutzenberger, Théorie Géométrique des Polynômes Eulériens, Lecture Notes in Math., no.138, Springer Verlag 1970; arXiv:math/0508232 [math.CO], 2005.

Dominique Foata and Guo-Niu Han, Doubloons and new q-tangent numbers, Quart. J. Math. 62 (2) (2011) 417-432.

E. T. Frankel, A calculus of figurate numbers and finite differences, American Mathematical Monthly, 57 (1950), 14-25. [Annotated scanned copy]

Ghislain R. Franssens, On a Number Pyramid Related to the Binomial, Deleham, Eulerian, MacMahon and Stirling number triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.4.1.

Jason Fulman, Gene B. Kim, Sangchul Lee, and T. Kyle Petersen, On the joint distribution of descents and signs of permutations, arXiv:1910.04258 [math.CO], 2019.

D. Galvin, G. Wesley and B. Zacovic, Enumerating threshold graphs and some related graph classes, arXiv:2110.08953 [math.CO], 2021.

S. Garoufalidis and R. Kashaev, From state integrals to q-series, arXiv:1304.2705 [math.GT], 2013.

Ira Gessel, The Smith College diploma problem.

Alexander Gnedin and Grigori Olshanski, The boundary of the Eulerian number triangle, arXiv:math/0602610 [math.PR], 2006.

Mats Granvik, Do these ratios of the Eulerian numbers converge to the logarithm of x?, Math Stack Exchange, Dec 30 2014.

Jim Haglund and Mirko Visontai, Stable multivariate Eulerian polynomials and generalized Stirling permutations.

Thomas Hameister, Sujit Rao, and Connor Simpson, Chow rings of matroids and atomistic lattices, research paper, University of Minnesota, 2017, also arXiv:1802.04241 [math.CO], 2018.

A. J. J. Heidrich, On the factorization of Eulerian polynomials, Journal of Number Theory, 18(2):157-168, 1984.

Herwig Hauser and Christoph Koutschan, Multivariate linear recurrences and power series division, Discrete Math. 312 (2012), no. 24, 3553--3560. MR2979485.

F. Hirzebruch, Eulerian polynomials, Münster J. of Math. 1 (2008), pp. 9-12.

P. Hitczenko and S. Janson, Weighted random staircase tableaux, arXiv:1212.5498 [math.CO], 2012.

Matthew Hubbard and Tom Roby, Pascal's Triangle From Top to Bottom

Hsien-Kuei Hwang, Hua-Huai Chern, and Guan-Huei Duh, An asymptotic distribution theory for Eulerian recurrences with applications, arXiv:1807.01412 [math.CO], 2018.

Svante Janson, Euler-Frobenius numbers and rounding, arXiv:1305.3512 [math.PR], 2013.

Lucas Kang, Investigation of Rule 73 as Case Study of Class 4 Long-Distance Cellular Automata, arXiv:1310.3311 [nlin.CG], 2013.

A. Kerber and K.-J. Thuerlings, Eulerian numbers, Foulkes characters and Lefschetz characters of S_n, Séminaire Lotharingien, Vol. 8 (1984), 31-36.

Takao Komatsu and Yuan Zhang, Weighted Sylvester sums on the Frobenius set in more variables, arXiv:2101.04298 [math.NT], 2021. Mentions this sequence.

A. R. Kräuter, Über die Permanente gewisser zirkulärer Matrizen..., Séminaire Lotharingien de Combinatoire, B11b (1984), 11 pp.

H. K. Krishnapriyan, Eulerian Polynomials and Faulhaber's Result on Sums of Powers of Integers, he College Mathematics Journal, Vol. 26, No. 2 (Mar., 1995), pp. 118-123 (6 pages).

D. H. Lehmer, Generalized Eulerian numbers, J. Combin. Theory Ser.A 32 (1982), no. 2, 195--215. MR0654621 (83k:10026).

C. Lenart and K. Zainoulline, Towards generalized cohomology Schubert calculus via formal root polynomials, arXiv:1408.5952 [math.AG], 2014.

Nan Li, Ehrhart h*-vectors of hypersimplices, Discr. Comp. Geom. 48 (2012) 847-878, Theorem 1.1

M-H. Li and N-C. Wong, Sums of angles of star polygons and the Eulerian Numbers, Southeast Asian Bulletin of Mathematics 2004.

A. Losev and Y. Manin, New moduli spaces of pointed curves and pencils of flat connections, arXiv:0001003 [math.AG], 2000 (p. 8)

Shi-Mei Ma, Some combinatorial sequences associated with context-free grammars, arXiv:1208.3104v2 [math.CO], 2012.

Shi-Mei Ma, On gamma-vectors and the derivatives of the tangent and secant functions, arXiv:1304.6654 [math.CO], 2013.

Shi-Mei Ma, A family of two-variable derivative polynomials for tangent and secant, El J. Combinat. 20 (1) (2013) P11.

Shi-Mei Ma, Qi Fang, Toufik Mansour, and Yeong-Nan Yeh, Alternating Eulerian polynomials and left peak polynomials, arXiv:2104.09374, 2021

Shi-Mei Ma, Jun Ma, and Yeong-Nan Yeh, On certain combinatorial expansions of descent polynomials and the change of grammars, arXiv:1802.02861 [math.CO], 2018.

S.-M. Ma, T. Mansour, and M. Schork, Normal ordering problem and the extensions of the Stirling grammar, arXiv:1308.0169 [math.CO], 2013.

Shi-Mei Ma, T. Mansour, and D. Callan, Some combinatorial arrays related to the Lotka-Volterra system, arXiv:1404.0731 [math.CO], 2014.

Shi-Mei Ma and Hai-Na Wang, Enumeration of a dual set of Stirling permutations by their alternating runs, arXiv:1506.08716 [math.CO], 2015.

P. A. MacMahon, The divisors of numbers, Proc. London Math. Soc., (2) 19 (1920), 305-340; Coll. Papers II, pp. 267-302.

R. Mantaci and F. Rakotondrajao, A permutation representation that knows what "Eulerian" means, Discrete Mathematics and Theoretical Computer Science, 4 101-108, (2001) [another version]

O. J. Munch, Om potensproduktsummer [Norwegian, English summary], Nordisk Matematisk Tidskrift, 7 (1959), 5-19. [Annotated scanned copy]

O. J. Munch, Om potensproduktsummer [ Norwegian, English summary ], Nordisk Matematisk Tidskrift, 7 (1959), 5-19.

Nagatomo Nakamura, Pseudo-Normal Random Number Generation via the Eulerian Numbers, Josai Mathematical Monographs, vol 8, p 85-95, 2015.

David Neal, The series Sum k=1 to oo n^m*x^n and a Pascal-Like Triangle, The College Mathematics Journal, Vol. 25, No. 2 (Mar., 1994), pp. 99-101 (3 pages).

S. Parker, The Combinatorics of Functional Composition and Inversion, Dissertation, Brandeis Univ. (1993).

Vincent Pilaud and V. Pons, Permutrees, arXiv preprint arXiv:1606.09643 [math.CO], 2016-2017.

C. de Jesús Pita Ruiz Velasco, Convolution and Sulanke Numbers, JIS 13 (2010) 10.1.8.

P. A. Piza, Kummer numbers, Mathematics Magazine, 21 (1947/1948), 257-260.

P. A. Piza, Kummer numbers, Mathematics Magazine, 21 (1947/1948), 257-260. [Annotated scanned copy]

A. Postnikov, V. Reiner, and L. Williams, Faces of generalized permutohedra, arXiv:0609184 [math.CO], 2007.

A. Randrianarivony and J. Zeng, Une famille de polynomes qui interpole plusieurs suites..., Adv. Appl. Math. 17 (1996), 1-26.

J. Riordan, Review of Frankel (1950) [Annotated scanned copy]

J. Riordan, Triangular permutation numbers, Proc. Amer. Math. Soc. 2 (1951) 429-432, r(x,t).

D. P. Roselle, Permutations by number of rises and successions, Proc. Amer. Math. Soc., 19 (1968), 8-16. [Annotated scanned copy]

G. Rzadkowski, Two formulas for Successive Derivatives and Their Applications, JIS 12 (2009) 09.8.2.

G. Rzadkowski, An Analytic Approach to Special Numbers and Polynomials, J. Int. Seq. 18 (2015) 15.8.8.

Grzegorz Rzadkowski and M. Urlinska, A Generalization of the Eulerian Numbers, arXiv preprint arXiv:1612.06635 [math.CO], 2016-2017.

J. Sack and H. Ulfarsson, Refined inversion statistics on permutations, arXiv:1106.1995 [math.CO], 2011.

M. Sheppeard, Constructive motives and scattering 2013 (p. 41).

D. Singh, The numbers L(m,n) and their relations with prepared Bernoulli and Eulerian numbers, Math. Student, 20 (1952), 66-70. [Annotated scanned copy]

M. Z. Spivey, On Solutions to a General Combinatorial Recurrence, J. Int. Seq. 14 (2011) # 11.9.7.

R. Sprugnoli, Alternating Weighted Sums of Inverses of Binomial Coefficients, J. Integer Sequences, 15 (2012), #12.6.3.

Yidong Sun and Liting Zhai, Some properties of a class of refined Eulerian polynomials, arXiv:1810.07956 [math.CO], 2018.

S. Tanimoto, A study of Eulerian numbers by means of an operator on permutations, Europ. J. Combin., 24 (2003), 33-43.

Eric Weisstein's World of Mathematics, Eulerian Number and Euler's Number Triangle

Susanne Wienand, plots of exceedances for permutations of [4]

L. K. Williams, Enumeration of totally positive Grassmann cells, arXiv:math/0307271 [math.CO], 2003-2004.

Anthony James Wood, Nonequilibrium steady states from a random-walk perspective, Ph. D. Thesis, The University of Edinburgh (Scotland, UK 2019).

Anthony J. Wood, Richard A. Blythe, and Martin R. Evans, Combinatorial mappings of exclusion processes, arXiv:1908.00942 [cond-mat.stat-mech], 2019.

Tingyao Xiong, Jonathan I. Hall, and Hung-Ping Tsao, Combinatorial Interpretation of General Eulerian Numbers, Journal of Discrete Mathematics, (2014), Article ID 870596, 6 pages.

D. Yeliussizov, Permutation Statistics on Multisets, Ph.D. Dissertation, Computer Science, Kazakh-British Technical University, 2012.

Yifan Zhang and George Grossman, A Combinatorial Proof for the Generating Function of Powers of a Second-Order Recurrence Sequence, J. Int. Seq. 21 (2018), #18.3.3.

Index entries for sequences related to rooted trees

Index entries for "core" sequences


T(n, k) = k * T(n-1, k) + (n-k+1) * T(n-1, k-1), T(1, 1) = 1.

T(n, k) = Sum_{j=0..k} (-1)^j * (k-j)^n * binomial(n+1, j).

Row sums = n! = A000142(n) unless n=0. - Michael Somos, Mar 17 2011

E.g.f. A(x, q) = Sum_{n>0} (Sum_{k=1..n} T(n, k) * q^k) * x^n / n! = q * ( e^(q*x) - e^x ) / ( q*e^x - e^(q*x) ) satisfies dA / dx = (A + 1) * (A + q). - Michael Somos, Mar 17 2011

For a column listing, n-th term: T(c, n) = c^(n+c-1) + Sum_{i=1..c-1} (-1)^i/i!*(c-i)^(n+c-1)*Product_{j=1..i} (n+c+1-j). - Randall L Rathbun, Jan 23 2002

From John Robertson (jpr2718(AT)aol.com), Sep 02 2002: (Start)

Four characterizations of Eulerian numbers T(i, n):

1. T(0, n)=1 for n>=1, T(i, 1)=0 for i>=1, T(i, n) = (n-i)T(i-1, n-1) + (i+1)T(i, n-1).

2. T(i, n) = Sum_{j=0..i} (-1)^j*binomial(n+1,j)*(i-j+1)^n for n>=1, i>=0.

3. Let C_n be the unit cube in R^n with vertices (e_1, e_2, ..., e_n) where each e_i is 0 or 1 and all 2^n combinations are used. Then T(i, n)/n! is the volume of C_n between the hyperplanes x_1 + x_2 + ... + x_n = i and x_1 + x_2 + ... + x_n = i+1. Hence T(i, n)/n! is the probability that i <= X_1 + X_2 + ... + X_n < i+1 where the X_j are independent uniform [0, 1] distributions. - See Ehrenborg & Readdy reference.

4. Let f(i, n) = T(i, n)/n!. The f(i, n) are the unique coefficients so that (1/(r-1)^(n+1)) Sum_{i=0..n-1} f(i, n) r^{i+1} = Sum_{j>=0} (j^n)/(r^j) whenever n>=1 and abs(r)>1. (End)

O.g.f. for n-th row: (1-x)^(n+1)*polylog(-n, x)/x. - Vladeta Jovovic, Sep 02 2002

Triangle T(n, k), n>0 and k>0, read by rows; given by [0, 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, ...] DELTA [1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, ...] (positive integers interspersed with 0's) where DELTA is Deléham's operator defined in A084938.

Sum_{k=1..n} T(n, k)*2^k = A000629(n). - Philippe Deléham, Jun 05 2004

From Tom Copeland, Oct 10 2007: (Start)

Bell_n(x) = Sum_{j=0..n} S2(n,j) * x^j = Sum_{j=0..n} E(n,j) * Lag(n,-x, j-n) = Sum_{j=0..n} (E(n,j)/n!) * (n!*Lag(n,-x, j-n)) = Sum_{j=0..n} E(n,j) * binomial(Bell.(x)+j, n) umbrally where Bell_n(x) are the Bell / Touchard / exponential polynomials; S2(n,j), the Stirling numbers of the second kind; E(n,j), the Eulerian numbers; and Lag(n,x,m), the associated Laguerre polynomials of order m.

For x = 0, the equation gives Sum_{j=0..n} E(n,j) * binomial(j,n) = 1 for n=0 and 0 for all other n. By substituting the umbral compositional inverse of the Bell polynomials, the lower factorial n!*binomial(y,n), for x in the equation, the Worpitzky identity is obtained; y^n = Sum_{j=0..n} E(n,j) * binomial(y+j,n).

Note that E(n,j)/n! = E(n,j)/(Sum_{k=0..n} E(n,k)). Also (n!*Lag(n, -1, j-n)) is A086885 with a simple combinatorial interpretation in terms of seating arrangements, giving a combinatorial interpretation to the equation for x=1; n!*Bell_n(1) = n!*Sum_{j=0..n} S2(n,j) = Sum_{j=0..n} E(n,j) * (n!*Lag(n, -1, j-n)).

(Appended Sept 16 2020) For connections to the Bernoulli numbers, extensions, proofs, and a clear presentation of the number arrays involved in the identities above, see my post Reciprocity and Umbral Witchcraft. (End)

From the relations between the h- and f-polynomials of permutohedra and reciprocals of e.g.f.s described in A049019: (t-1)((t-1)d/dx)^n 1/(t-exp(x)) evaluated at x=0 gives the n-th Eulerian row polynomial in t and the n-th row polynomial in (t-1) of A019538 and A090582. From the Comtet and Copeland references in A139605: ((t+exp(x)-1)d/dx)^(n+1) x gives pairs of the Eulerian polynomials in t as the coefficients of x^0 and x^1 in its Taylor series expansion in x. - Tom Copeland, Oct 05 2008

G.f: 1/(1-x/(1-x*y/1-2*x/(1-2*x*y/(1-3*x/(1-3*x*y/(1-... (continued fraction). - Paul Barry, Mar 24 2010

If n is odd prime, then the following consecutive 2*n+1 terms are 1 modulo n: a((n-1)*(n-2)/2+i), i=0,...,2*n. This chain of terms is maximal in the sense that neither the previous term nor the following one are 1 modulo n. - _Vladimir Shevelev, Jul 01 2011

From Peter Bala, Sep 29 2011: (Start)

For k = 0,1,2,... put G(k,x,t) := x -(1+2^k*t)*x^2/2 +(1+2^k*t+3^k*t^2)*x^3/3-(1+2^k*t+3^k*t^2+4^k*t^3)*x^4/4+.... Then the series reversion of G(k,x,t) with respect to x gives an e.g.f. for the present table when k = 0 and for A008517 when k = 1.

The e.g.f. B(x,t) := compositional inverse with respect to x of G(0,x,t) = (exp(x)-exp(x*t))/(exp(x*t)-t*exp(x)) = x + (1+t)*x^2/2! + (1+4*t+t^2)*x^3/3! + ... satisfies the autonomous differential equation dB/dx = (1+B)*(1+t*B) = 1 + (1+t)*B + t*B^2.

Applying [Bergeron et al., Theorem 1] gives a combinatorial interpretation for the Eulerian polynomials: A(n,t) counts plane increasing trees on n vertices where each vertex has outdegree <= 2, the vertices of outdegree 1 come in 1+t colors and the vertices of outdegree 2 come in t colors. An example is given below. Cf. A008517. Applying [Dominici, Theorem 4.1] gives the following method for calculating the Eulerian polynomials: Let f(x,t) = (1+x)*(1+t*x) and let D be the operator f(x,t)*d/dx. Then A(n+1,t) = D^n(f(x,t)) evaluated at x = 0.


With e.g.f. A(x,t) = G[x,(t-1)]-1 in Copeland's 2008 comment, the compositional inverse is Ainv(x,t) = log(t-(t-1)/(1+x))/(t-1). - Tom Copeland, Oct 11 2011

T(2*n+1,n+1) = (2*n+2)*T(2*n,n). (E.g., 66 = 6*11, 2416 = 8*302, ...) - Gary Detlefs, Nov 11 2011

E.g.f.: (1-y) / (1 - y*exp( (1-y)*x )). - Geoffrey Critzer, Nov 10 2012

From Peter Bala, Mar 12 2013: (Start)

Let {A(n,x)} n>=1 denote the sequence of Eulerian polynomials beginning [1, 1 + x, 1 + 4*x + x^2, ...]. Given two complex numbers a and b, the polynomial sequence defined by R(n,x) := (x+b)^n*A(n+1,(x+a)/(x+b)), n >= 0, satisfies the recurrence equation R(n+1,x) = d/dx((x+a)*(x+b)*R(n,x)). These polynomials give the row generating polynomials for several triangles in the database including A019538 (a = 0, b = 1), A156992 (a = 1, b = 1), A185421 (a = (1+i)/2, b = (1-i)/2), A185423 (a = exp(i*Pi/3), b = exp(-i*Pi/3)) and A185896 (a = i, b = -i).


E.g.f.: 1 + x/(T(0) - x*y), where T(k) = 1 + x*(y-1)/(1 + (k+1)/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 07 2013

From Tom Copeland, Sep 18 2014: (Start)

A) Bivariate e.g.f. A(x,a,b)= (e^(ax)-e^(bx))/(a*e^(bx)-b*e^(ax)) = x + (a+b)*x^2/2! + (a^2+4ab+b^2)*x^3/3! + (a^3+11a^2b+11ab^2+b^3)x^4/4! + ...

B) B(x,a,b)= log((1+ax)/(1+bx))/(a-b) = x - (a+b)x^2/2 + (a^2+ab+b^2)x^3/3 - (a^3+a^2b+ab^2+b^3)x^4/4 + ... = log(1+u.*x), with (u.)^n = u_n = h_(n-1)(a,b) a complete homogeneous polynomial, is the compositional inverse of A(x,a,b) in x (see Drake, p. 56).

C) A(x) satisfies dA/dx = (1+a*A)(1+b*A) and can be written in terms of a Weierstrass elliptic function (see Buchstaber & Bunkova).

D) The bivariate Eulerian row polynomials are generated by the iterated derivative ((1+ax)(1+bx)d/dx)^n x evaluated at x=0 (see A145271).

E) A(x,a,b)= -(e^(-ax)-e^(-bx))/(a*e^(-ax)-b*e^(-bx)), A(x,-1,-1) = x/(1+x), and B(x,-1,-1) = x/(1-x).

F) FGL(x,y) = A(B(x,a,b) + B(y,a,b),a,b) = (x+y+(a+b)xy)/(1-ab*xy) is called the hyperbolic formal group law and related to a generalized cohomology theory by Lenart and Zainoulline. (End)

For x > 1, the n-th Eulerian polynomial A(n,x) = (x - 1)^n * log(x) * Integral_{u>=0} (ceiling(u))^n * x^(-u) du. - Peter Bala, Feb 06 2015

Sum_{j>=0} j^n/e^j, for n>=0, equals Sum_{k=1..n} T(n,k)e^k/(e-1)^(n+1), a rational function in the variable "e" which evaluates, approximately, to n! when e = A001113 = 2.71828... - Richard R. Forberg, Feb 15 2015

For a fixed k, T(n,k) ~ k^n, proved by induction. - Ran Pan, Oct 12 2015

From A145271, multiply the n-th diagonal (with n=0 the main diagonal) of the lower triangular Pascal matrix by g_n = (d/dx)^n (1+a*x)*(1+b*x) evaluated at x= 0, i.e., g_0 = 1, g_1 = (a+b), g_2 = 2ab, and g_n = 0 otherwise, to obtain the tridiagonal matrix VP with VP(n,k) = binomial(n,k) g_(n-k). Then the m-th bivariate row polynomial of this entry is P(m,a,b) = (1, 0, 0, 0,..) [VP * S]^(m-1) (1, a+b, 2ab, 0, ..)^T, where S is the shift matrix A129185, representing differentiation in the divided powers basis x^n/n!. Also, P(m,a,b) = (1, 0, 0, 0,..) [VP * S]^m (0, 1, 0, ..)^T. - Tom Copeland, Aug 02 2016


The triangle T(n, k) begins:

n\k 1    2     3      4       5       6      7     8    9 10 ...

1:  1

2:  1    1

3:  1    4     1

4:  1   11    11      1

5:  1   26    66     26       1

6:  1   57   302    302      57       1

7:  1  120  1191   2416    1191     120      1

8:  1  247  4293  15619   15619    4293    247     1

9:  1  502 14608  88234  156190   88234  14608   502    1

10: 1 1013 47840 455192 1310354 1310354 455192 47840 1013  1

... Reformatted. - Wolfdieter Lang, Feb 14 2015


E.g.f. = (y) * x^1 / 1! + (y + y^2) * x^2 / 2! + (y + 4*y^2 + y^3) * x^3 / 3! + ... - Michael Somos, Mar 17 2011

Let n=7. Then the following 2*7+1=15 consecutive terms are 1(mod 7): a(15+i), i=0..14. - Vladimir Shevelev, Jul 01 2011

Row 3: The plane increasing 0-1-2 trees on 3 vertices (with the number of colored vertices shown to the right of a vertex) are


.   1o (1+t)         1o t         1o t

.   |                / \          / \

.   |               /   \        /   \

.   2o (1+t)      2o     3o    3o    2o

.   |

.   |

.   3o


The total number of trees is (1+t)^2 + t + t = 1 + 4*t + t^2.


A008292 := proc(n, k) option remember; if k < 1 or k > n then 0; elif k = 1 or k = n then 1; else k*procname(n-1, k)+(n-k+1)*procname(n-1, k-1) ; end if; end proc:


t[n_, k_] = Sum[(-1)^j*(k-j)^n*Binomial[n+1, j], {j, 0, k}];

Flatten[Table[t[n, k], {n, 1, 10}, {k, 1, n}]] (* Jean-François Alcover, May 31 2011, after Michael Somos *)

Flatten[Table[CoefficientList[(1-x)^(k+1)*PolyLog[-k, x]/x, x], {k, 1, 10}]] (* Vaclav Kotesovec, Aug 27 2015 *)


   Count[#, x_ /; x > 0] & /@ (Differences /@

      Permutations[Range[n]])][[;; , 2]], {n, 10}] (* Li Han, Oct 11 2020 *)


(PARI) {T(n, k) = if( k<1 || k>n, 0, if( n==1, 1, k * T(n-1, k) + (n-k+1) * T(n-1, k-1)))}; /* Michael Somos, Jul 19 1999 */

(PARI) {T(n, k) = sum( j=0, k, (-1)^j * (k-j)^n * binomial( n+1, j))}; /* Michael Somos, Jul 19 1999 */

{A008292(c, n)=c^(n+c-1)+sum(i=1, c-1, (-1)^i/i!*(c-i)^(n+c-1)*prod(j=1, i, n+c+1-j))}


import Data.List (genericLength)

a008292 n k = a008292_tabl !! (n-1) !! (k-1)

a008292_row n = a008292_tabl !! (n-1)

a008292_tabl = iterate f [1] where

   f xs = zipWith (+)

     (zipWith (*) ([0] ++ xs) (reverse ks)) (zipWith (*) (xs ++ [0]) ks)

     where ks = [1 .. 1 + genericLength xs]

-- Reinhard Zumkeller, May 07 2013


from sympy import binomial

def T(n, k): return sum([(-1)**j*(k - j)**n*binomial(n + 1, j) for j in range(k + 1)])

for n in range(1, 11): print([T(n, k) for k in range(1, n + 1)]) # Indranil Ghosh, Nov 08 2017


T <- function(n, k) {

  S <- numeric()

  for (j in 0:k) S <- c(S, (-1)^j*(k-j)^n*choose(n+1, j))



for (n in 1:10){

  for (k in 1:n) print(T(n, k))

} # Indranil Ghosh, Nov 08 2017

(GAP) Flat(List([1..10], n->List([1..n], k->Sum([0..k], j->(-1)^j*(k-j)^n*Binomial(n+1, j))))); # Muniru A Asiru, Jun 29 2018

(Sage) [[sum((-1)^j*binomial(n+1, j)*(k-j)^n for j in (0..k)) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Feb 23 2019

(Magma) Eulerian:= func< n, k | (&+[(-1)^j*Binomial(n+1, j)*(k-j+1)^n: j in [0..k+1]]) >; [[Eulerian(n, k): k in [0..n-1]]: n in [1..10]]; // G. C. Greubel, Apr 15 2019


Columns k=2..8 are A000295, A000460, A000498, A000505, A000514, A001243, A001244.

Cf. A019538, A028246, A048993, A048994, A049019, A086885, A090582, A129185, A131758, A139605, A173018.

Sequence in context: A221987 A285357 A174526 * A174036 A157221 A146967

Adjacent sequences:  A008289 A008290 A008291 * A008293 A008294 A008295




N. J. A. Sloane, Mar 15 1996


Thanks to Michael Somos for additional comments.

Further comments from Christian G. Bower, May 12 2000



Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 8 09:40 EDT 2022. Contains 356009 sequences. (Running on oeis4.)