login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A185423 Ordered forests of k increasing plane unary-binary trees with n nodes. 6
1, 1, 2, 3, 6, 6, 9, 30, 36, 24, 39, 150, 270, 240, 120, 189, 918, 1980, 2520, 1800, 720, 1107, 6174, 16254, 25200, 25200, 15120, 5040, 7281, 47070, 142884, 266616, 327600, 272160, 141120, 40320, 54351, 394470, 1369710, 2948400, 4331880 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

An increasing tree is a labeled rooted tree with the property that the sequence of labels along any path starting from the root is increasing. A080635 enumerates increasing plane (ordered) unary-binary trees with n nodes with labels drawn from the set {1,2,...,n}. The entry T(n,k) of the present table counts ordered forests of k increasing plane unary-binary trees with n nodes. See below for an example. See A185421 for the corresponding table in the non-plane case. See A185422 for the table for unordered forests of increasing plane unary-binary trees.

LINKS

Table of n, a(n) for n=1..41.

FORMULA

TABLE ENTRIES

(1)... T(n,k) = Sum_{j=0..k} (-1)^j*binomial(k,j)*P(n,j),

where P(n,x) are the polynomials described in A185415.

Compare (1) with the formula for the number of ordered set partitions

(2)... A019538(n,k) = Sum_{j=0..k} (-1)^j*binomial(k,j)*j^n.

RECURRENCE RELATION

(3)... T(n+1,k) = k*(T(n,k-1) + T(n,k) + T(n,k+1))

GENERATING FUNCTION

Let E(t) = 1/2 + (sqrt(3)/2)*tan(sqrt(3)/2*t + Pi/6) be the e.g.f. for A080635.

The e.g.f. for the present triangle is

(4)... 1/(1+x*(1-E(t)) = Sum {n>=0} R(n,x)*t^n/n!

= 1 + x*t + (x+2*x^2)*t^2/2! + (3*x+6*x^2+6*x^3)*t^3/3! + ....

ROW POLYNOMIALS

The ordered Bell polynomials OB(n,x) are the row polynomials of A019538 given by

(5)... OB(n,x) = Sum_{k=1..n} k!*Stirling2(n,k)*x^k.

By comparing the e.g.f.s for A019538 and the present table we obtain the surprising identity

(6)... (-i*sqrt(3))^(n-1)*OB(n,x)/x = R(n,y)/y,

where i = sqrt(-1) and x = (sqrt(3)*i/3)*y + (-1/2+sqrt(3)*i/6).

RELATIONS WITH OTHER SEQUENCES

Column 1: A080635.

A185422(n,k) = T(n,k)/k!.

Setting y = 0 in (6) gives

(7)... A080635(n) = (-i*sqrt(3))^(n-1)*Sum_{k=1..n} k!*Stirling2(n,k) * (-1/2+sqrt(3)*i/6)^(k-1).

EXAMPLE

Triangle begins

n\k|....1......2......3......4......5......6......7

===================================================

..1|....1

..2|....1......2

..3|....3......6......6

..4|....9.....30.....36.....24

..5|...39....150....270....240....120

..6|..189....918...1980...2520...1800....720

..7|.1107...6174..16254..25200..25200..15120...5040

..

Examples of recurrence relation:

T(5,3) = 270 = 3*(T(4,2) + T(4,3) + T(4,4)) = 3*(30+36+24);

T(6,1) = 1*(T(5,0) + T(5,1) + T(5,2)) = 39+150.

Examples of ordered forests:

T(4,2) = 30. The 15 unordered forests consisting of two plane increasing unary-binary trees on 4 nodes are shown below. We can order the trees in a forest in two ways giving rise to 30 ordered forests.

......... ......... ...3.....

.2...3... .3...2... ...|.....

..\./.... ..\./.... ...2.....

...1...4. ...1...4. ...|.....

......... ......... ...1...4.

.

......... ......... ...4.....

.2...4... .4...2... ...|.....

..\./.... ..\./.... ...2.....

...1...3. ...1...3. ...|.....

......... ......... ...1...3.

.

......... ......... ...4.....

.3...4... .4...3... ...|.....

..\./.... ..\./.... ...3.....

...1...2. ...1...2. ...|.....

......... ......... ...1...2.

.

......... ......... ...4.....

.3...4... .4...3... ...|.....

..\./.... ..\./.... ...3.....

...2...1. ...2...1. ...|.....

......... ......... ...2...1.

.

......... ......... ..........

..2..4... ..3..4... ..4...3...

..|..|... ..|..|... ..|...|...

..1..3... ..1..2... ..1...2...

......... ......... ..........

MAPLE

#A185423

P := proc(n, x)

description 'polynomial sequence P(n, x) A185415'

if n = 0 return 1

else

return x*(P(n-1, x-1)-P(n-1, x)+P(n-1, x+1))

end proc:

with combinat:

T:=(n, k) -> add ((-1)^(k-j)*binomial(k, j)*P(n, j), j = 0..k):

for n from 1 to 10 do

seq(T(n, k), k = 1..n);

end do;

PROG

(PARI) {T(n, k)=if(n<1|k<1|k>n, 0, if(n==1, if(k==1, 1, 0), k*(T(n-1, k-1)+T(n-1, k)+T(n-1, k+1))))}

CROSSREFS

Cf. A019538, A080635, A185421, A185422.

Sequence in context: A187326 A056907 A039799 * A144583 A155215 A119319

Adjacent sequences:  A185420 A185421 A185422 * A185424 A185425 A185426

KEYWORD

nonn,easy,tabl

AUTHOR

Peter Bala, Jan 28 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 15 16:48 EDT 2018. Contains 313778 sequences. (Running on oeis4.)