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1. Introduction. Permutations with restricted positions are treated
at length in Riordan’s book [4]. Two of the problems considered are
the “probléme des rencontres” and the enumeration of permutations
by number of rises in the permutation. The former asks for the num-
ber of permutations

(1 1) (1 2 .. n)
) Lo Ly by
such that ;5 (j=1(1)n) and the latter asks for the number of per-
mutations for which there are a fixed number of j such that /; </;j4.
Two notational conventions will prove useful in what follows. First,
it shall be convenient to write the permutation (1.1) as the one line
array (ly, ks, - - -, I,) and, secondly, when enumerating permutations

by number of rises, we shall attach an initial rise. Thus, for example,
the permutations

231, 1432

each have two rises. Notice that the first of these is admissible as a
c' recontres permutation, whereas' the second is not admissible.
) Let D, denote the number of rencontres permutations. Then
[4, p. 59]

(1.2) Dy = nDyy+ (=) = Z (= 1)i(n!/5.

Also, if 4 (n, k) denotes the number of permutations (1.1) with exactly
k rises, then A (1, k) =6y (Kronecker delta) and

(1.3) A, k) =kd(n — L,B)+ (mn+1—kAn—1,k— 1).

It follows from (1.3) that A (n, k) is the Eulerian number [1], [2]
given by the formula

L n+1
(1.4) Alm, ) = Z<—1>f(’ ) )(k—j)n.

=0
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Next, we define a succession in a permutation (1.1) as an element
pair (/;, l;+1) with l;;3=1/;+1. Permutations without successions are
enumerated in [5, p. 103] and the enumerator by number of succes-
sions in [6]

(1.5) Sa(x) = Du(x) + (1 — x)Dya(x),
with
(1.6) D,(x) = (D + x)7, Di= D,

the rencontres polynomial.

Here we are concerned with enumerating permutations both by
number of rises and number of successions. The author is indebted to
the referee for many helpful suggestions and for pointing out refer-
ences [5] and [6].

2. Reduction of the problem. Let P(n, r, s) denote the number of

permutations (1.1) which have exactly 7 rises and s successions. We
prove that

P(n —s,r —s,0).
)

n
(2.1) P(n,r,s) = (

N

Fix n, 7, and s and let P and Q denote the sets of permutations
enumerated by P(n, 7, s) and P(n—s, r—s, 0), respectively.

Given 7€ P, we delete the s elements which occur as the second
element of a succession in 7. This defines a mapping of P onto the set
S of sequences.

(2.2) p=(njo ) ins)

containing 1, having » —s rises, and such that, if the elements are
ordered,

(23) 1=jlc1<jk2< <jkn_,§ﬂ,
then there is no pair
(24) (j”":jm-rl) = (jkl’jkl+l) (1 =miz=n—1-— .Y).

For if p contained a pair (ju, jm+1) satisfying (2.4) then, replacing the
elements deleted from 7, we see that the succession (jmi1—1, jm+1)
occurs in 7. This contradicts the occurrence of j.41 in p or, if we prefer,
shows that 7 has at least s+ 1 increases.

The inverse of the mapping defined above can be described explic-
itly. For if p€Sand < - - - <¢, are the elements of {2, 3, -, n}
not occurring in p, we define the permutation 7 inductively by first
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inserting ¢, immediately to the right of 4, —1 in p and, at the ith stage,
¢t; immediately to the right of £;—1. It is easy to verify that the permu-
tation m constructed in this way corresponds, under the correspon-
dence of the last paragraph, to the sequence p. Thus

(2.5) |s| = |P]|.

On the other hand, given p&.S, ordered according to (2.3), we
define a permutation ¢ of {1, 2, -, n—s} by replacing ji, by ¢ in
p. Itis clear that o has rises in exactly the same positions as p, hence a
total of r—s rises. Moreover, (2.4) assures us that ¢ has no succes-
sions. Thus ¢ ©Q. That the mapping from S to Q defined in this way
is onto is immediate when we notice that QCS.

However, the mapping from S to Q is many-to-one. Indeed, given
& (Q, we select n—1—s elements

(2.6) Ik <k < 00 <k

from the set {2, 3, - - -, n} and replace ¢ by j, in o. The resulting
sequence p has rises in the same positions as ¢ and, since ¢ has no suc-
cessions, p has no pair satisfying (2.4). We easily verify that this
sequence p corresponds to ¢ and that any sequence which corresponds
to o can be constructed in this manner. Therefore, since the elements
(2.6) can be chosen in

-1 —1
(-0
n—1—s s
ways, we get

(2.8) || =(":1)|QI,

which, together with (2.5), implies (2.1).
o= 132
™
13452
14523
15234
12453
12534
12354,
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We easily verify that P(3, 2, 0) =2. Thus by (2.1)
s+ 2
P(s+3,s+2,5) =2 ) )=(s+1)(s+2)

and, for s=2, the preceding table illustrates the correspondences
given above.

3. The numbers P(n, 7). In view of (2.1) it will suffice to determine
the numbers P(n, r)=P(n, r, 0).

Noting that the number s of successions in a permutation satisfies
the inequalities 0 <s <7, it follows from the combinatorial interpreta-
tion of the Eulerian numbers that

3.1) i P(n,r,s) = A(n, r).

But, using (2.1), this entails

(3.2) i‘(n—1>P(n—s,r—s) = A(n, ),

§=0 §

which is equivalent to

r—1

(3.3) Z(—l)’(n:1>A(n—s,r—-s) = P(n,r).

=0

We remark that (3.3) can be proved directly using the principle of
inclusion and exclusion [4, p. 50] and that, together with (1.4), it
implies an explicit formula for P(n, r). Notice also that

P(n,r) =0 (r = n)

follows from (3.3).
Next, if we define the polynomials

G.4) Pal) = S P(n, 7)1,

(3.5) A.() = Z_I A(n, Nt

then (3.3) implies
(3.6) P.(f) = AW(AQ@) — O™, AX() = 4.

It follows that
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Pu(t) = (A@)) — t+ (4@ — p= .
= (A@®) — D+ 1A@) —
Thus if we put
3.7 B = (40) — i = 3 PHm, 1,

we get
(3.8) Pa(l) = Pa(l) + 1Pas(0).

We shall see that the polynomial P%(/) is more convenient than
P,(1).

4. Recurrences. Writing

@y Pew=x oY

un
)
n=0 n!

. o 11
(4.2) At u) = EA"U) ; - 1 — texplu(l — 1)) ’

we see from 3.7 that
(4.3) P*(t,u) = e A(t, u)
and, with subscripts denoting partial derivatives,
(0 — tu) Aty m) = 1A w) + t(1 — ) A,(¢, w).
Consequently .
(4.4) (1 — ) Pult, w) = wP*(t, u) + 11 — O P, u)
which entails, with D=d/dt,
(4.5)  Piald) = n(Po(0) + Pia(®) + €1 — )DPLY).
Note that, using (3.7), (3.8), and (4.5), we obtain the recurrence
(4.6) Pn+ 1,7 =rP*(n,r) + (n+ 1 — ) P*n,r — 1)
+ nP*(n — 1,7 — 1)
and, since
4.7 P(n,r) = P¥(n,r) + P*(n — 1,7 — 1),
we have also
(4.8) Pn+1,7) = rP(n,r) + (n+ 1 — ») P(n, )
+ n—1DPn—1,r—1).

L 3

(ne,2) = 207 (n,) +2n-1-
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The folloying tables of P*(n, 7) and P(n, r) \§ Sr<nf7) are easily

computed uking (4.6) and (4.7).

k k /
1 2 3 4 5 6 1 3 4 5 6
A A\ / _
1o 1] (W
2 1 7 1
31 1 _3— T 2 o
MR 41| 8| 2
—5 T 21 21 1 ? 1 22 28 2
_6 T 51 | 161 51 1 - _6— —1_ 52 | 182 72 2 o
7 ‘ 1113 | 813 | 813 | 113 |1 _:7— 1] 114 | 864 | 974 | 164 | 2

5. The polynomial PX(t). We remark that the combinatorial inter-
pretation of P(n, r) furnishes a similar interpretation of P*(, 7).
Indeed, it follows from (4.7) that P*(n, ) is the number of permuta-
tions (1.1) with 7 rises, no successions, and ;> 1.

In the next place we have, using (4.2) and (4.3),

(5.1) PRt u) = P*(E, tu),

which is equivalent to either of
(5.2) P = P,
(5.3) P¥(n,7) = P*¥(n,n — 7).

Notice that, using (3.7) and the familiar symmetry property of the
Eulerian numbers, we have

ALY = A = (PR + oY
= (tP*@ + ),
which, in view of (5.2), implies, for n=1,
(5.4) A = (P + 1), PHO = Py
In exactly the same way we find that

(5.5) 1Pt = (A(l) — Dm 4+ (=Dt — 1).
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The relations (5.4) and (5.5) are more convenient for calculation
than (3.7).
Next we define the polynomial

(5.6) Pu(a, ) = (a4 P*®),  P*(i) = Pa(i),
so that

(5.7) tPA(1, ) = Au() = Pi(t, b),

(5.8) P30, 1) = P.(i).

Writing F(x, @, t) = »_P%(a, t)x*/n!, we find using (4.2) and (4.3)
that
(1 — ?) expl(a — 1)z]

exp[x(t — 1)] — ¢

(5.9) F(x,a,t) =
which is equivalent to

* a — 1
(5.10) P,la,t) = (t — 1)"H, (1—1’t>,

with H,(u|\) defined [1] by

1 — )\ TU © n
e W AID
—0 n!

et — A\ ”

Notice also that (5.8) implies the recurrence

(5.11)  [P*a,0) + (¢ = )] = Pa(a, &) + (1 — f)(a — 1)~

6. Special cases. Taking t=—1in (5.9), we get
© % xn 26(a+1):t

> Pua, —1) — = ,
n! e +1

which implies "
(6.1) Pr(a, —1) = 2"E,(a),
with E,(a) the Euler polynomial. In particular,
(6.2) Pi(—1) = 22E.(0) = E,

with £, the Euler number. For properties of Euler numbers and
polynomials, the reader is referred to [3].
Next it follows from (4.5) that

Pria(1) = nPi(1) + nPiy(1)
= (n+ D PA(1) + (= 1)+,
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Comparing this with (1.2) we see that

(6.3) Pi(1) = D,

the rencontres number. Thus, using (6.2), we obtain
(6.4) Pa(a, 1) = Du(a),

the rencontres polynomial.
It is clear from the combinatorial meaning of P(x, 7, s) that the
polynomial

n

(6.5) Pu(x, ) = > ri P(n, r, s)xsi”

=1 §=0

satisfies

(6.6) Py(x,1) = Salx),

(6.7) P, (1, 1) = Ra(),

where S, (x) and R, () are the enumerators for permutations by num-

ber of successions and rises, respectively. Also it follows from (2.1)
and (3.8) that

P ) = (" - 1) 5510 Po(l)

=0 S

(7)ot

N

PO (P*()) + o)™ + ((P*() + o)™,
which is the same as
(6.8) Pu(x, ) = (P*(t) + st)» + (1 — x)(P*(t) + 2",
or, using (5.6),
(6.9) Po(x, i) = Pa(at, ) + (1 — x) Prs(at, §).
Consequently it follows from (6.4) and (6.6) that
(6.10) Sn(x) = Du(x) + (1 —~ 2) Dpa()
and from (5.7) that
(6.11) R.(t) = A4.(1)

are the enumerators for permutations by number of successions and
rises.

We remark that the generating function for the polynomial defined
by (6.5) can be found by combining (5.9) and (6.9).
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