The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A285357 Square array read by antidiagonals: T(m,n) = the number of tight m X n pavings (defined below). 9
 1, 1, 1, 1, 4, 1, 1, 11, 11, 1, 1, 26, 64, 26, 1, 1, 57, 282, 282, 57, 1, 1, 120, 1071, 2072, 1071, 120, 1, 1, 247, 3729, 12279, 12279, 3729, 247, 1, 1, 502, 12310, 63858, 106738, 63858, 12310, 502, 1, 1, 1013, 39296, 305464, 781458, 781458, 305464, 39296, 1013, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 COMMENTS A tight m X n paving is a dissection of an m X n rectangle into m+n-1 rectangles, having m+1 distinct boundary lines in one dimension and n+1 distinct boundary lines in another. There's another characterization of tight pavings (cf. the lemma in the solution reference). The 2nd column are the Eulerian numbers A000295(n+1) = 2^(n+1) - n - 2. The 3rd column/diagonal is given in A285361. - M. F. Hasler, Jan 11 2018 Related to the dissection of rectangles into smaller rectangles, see Knuth's Stanford lecture video. Sequence A116694 gives the number of these dissections. - M. F. Hasler, Jan 22 2018 LINKS Denis Roegel, Table of n, a(n) for n = 1..91 [Antidiagonals n = 1..13; a(51)=781458 corrected by Georg Fischer, Jul 30 2020] M. F. Hasler, Illustration of initial terms. M. F. Hasler, Interactive illustration of T(2,n). (Uses JavaScript). D. E. Knuth (Proposer), Tight m-by-n pavings; Problem 12005, Amer. Math. Monthly 124 (No. 8, Oct. 2017), page 755. Solution in Amer. Math. Monthly 126 (No. 7, July 2019), page 660-664. D. E. Knuth, A conjecture that had to be true, Stanford Lecture: Don Knuth's Christmas Tree Lecture 2017. Roberto Tauraso, Problem 12005, Proposed solution. Konstantin Vladimirov, Generating things, Program naivepavings.cc to enumerate all tight pavings. FORMULA From M. F. Hasler, Jul 30 2020 (Start): T(1,n) = 1. T(2,n) = A000295(n+1) = 2^(n+1) - n - 2. T(3,n) = A285361(n) = (3^(n+3) - 5*2^(n+4) + 4*n^2 + 26*n + 53)/4. (End) From Roberto Tauraso, Aug 02 2020 (Start): T(4,n) = A336732(n) = (4^(n+5) + (n-42)*3^(n+4) - 9*(2*n-27)*2^(n+5) - 36*n^3-486*n^2 - 2577*n - 5398)/36. T(5,n) = A336734(n) = (5^(n+7) + (2*n-66)*4^(n+6) + (16*n^2-1432*n+13164)*3^(n+3) + (303*n-1505)*2^(n+10) + 576*n^4 + 13248*n^3 + 129936*n^2 + 646972*n + 1377903)/576. (End) EXAMPLE There are 1071 tight pavings when m = 3 and n = 5. Two of them have their seven rectangles in the trivial patterns 11111|22222|34567 and 12345|12346|12347; a more interesting example is 11122|34422|35667. The array begins:   1   1    1    1    1    1    1  ...   1   4   11   26   57  120  ...   1  11   64  282 1071  ...   1  26  282 2072  ...   1  57 1071  ...   1 120  ...   ... PROG (PARI) /* List all 2 X n tight pavings, where 0 = |, 1 = ┥, 2 = ┙, 3 = ┑ */ nxt=[[0, 1, 2, 3], , [1, 2, 3], [1, 2, 3]]; T2(n, a=0, d=a%10)={if(n>1, concat(apply(t->T2(n-1, a*10+t), nxt[d+1+(!d&&a)])), [a*10+(d>1||!a)])} \\ M. F. Hasler, Jan 20 2018 for(n=1, 20, print1(#T2(n), ", ")) \\ gives row T(2, n) - Georg Fischer, Jul 30 2020 CROSSREFS Cf. A000295 (m=2), A116694, A285361 (m=3), A298362, A298432 (diagonal sums), A298433 (diagonal), A336732 (m=4), A336734 (m=5). Sequence in context: A156534 A168287 A221987 * A174526 A008292 A174036 Adjacent sequences:  A285354 A285355 A285356 * A285358 A285359 A285360 KEYWORD nonn,tabl,hard AUTHOR Don Knuth, Apr 17 2017 EXTENSIONS Edited by M. F. Hasler, Jan 13 2018 and by N. J. A. Sloane, Jan 14 2018 a(29)-a(55) from Hugo Pfoertner, Jan 19 2018 a(51) corrected by Hugo Pfoertner, Jul 29 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 25 16:50 EST 2020. Contains 338625 sequences. (Running on oeis4.)