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RECENT MATHEMATICAL TABLLES 15

.+ 1, L.—G. Brancu & R. Siecer, “Table of modified Bernoulli poly-
mials,” NBS, Jn. of Research, v. 44, 1950, p. 103-107.

I'he polynomials to which the title refers may be defined by their Fourier
. as follows

bipi(x) = — 2 ﬁ"”’ cos (nx + imk)
. n=1

sre related to the Bernoulli polynomials

Bi(x) = (B + x)*
e relation
Zk'bk(ZTx) = (—21r)"Bk(x)

xt Tx 2 .
dathi(x) = (r — x)/2,by(x) = 7 — 5 + 7, cte. The polynomials are

6
~n explicitly for k = 1(1)11 and [x = 0(%)11—; 17D] . The values were

~puted from differences using the IBM 405 tabulator and checked by
mation.

D. H. L.

w2 1.—E. T. FRANKEL, “A calculus of figurate numbers and finite differ-
ences,”” Amer. Math. Monthly, v. 57, 1950, p. 14-25.

Figurate numbers are, effectively, taken as defined by generating
“ctions
(1 —_ l,) P Z ;,‘rr;ér
 thus are essentially binomial coefficients with sign convention reversed.
“r relation to finite differences and sums depends essentially on the
wing results.
Ii V() = 3wt is the generating function of u, ( =0, 1, ---), then
\= &' V(¢) is the generating function of 4o + %y + - - -+ %, and (1 — ) V(©)
@p— u,_;. The author writes Su, = uo -+ 21 +---+ % and Su,
='U, - u,_; and defines their iterates in the usual way, which of course
'ves figurate numbers. The function generated by the product of two
-ating functions, now commonly called the convolution, he calls the
enssross product. For n-th degree polynomials, special attention is given
nmbers S~y which the author calls d,, because &, = 0,7 > n, and
ofber sums (or differences) of the given number sequence %, can be ex-
fressed in terms of them. Other than illustrative tables, there are two main
tebles one of figurate numbers F,* forn = — 7(1)7 and r = 0(1)7 and one
de= S-+0pn for 4 = 1(1)11 and » = 1(1)11. The last have a long his-
(" 1ck to LapLace) and have lately been called cumulative numbers
U‘fd KumMER numbers (Piza), triangular permutation numbers
CANSKY IORDAN).
J. RIORDAN

*“rhone Laboratories
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