This site is supported by donations to The OEIS Foundation.

CiteE

From OeisWiki
Jump to: navigation, search


About this page

  • This is part of the series of OEIS Wiki pages that list works citing the OEIS.
  • Additions to these pages are welcomed.
  • But if you add anything to these pages, please be very careful — remember that this is a scientific database. Spell authors' names, titles of papers, journal names, volume and page numbers, etc., carefully, and preserve the alphabetical ordering.
  • If you are unclear about what to do, contact one of the Editors-in-Chief before proceeding.
  • Works are arranged in alphabetical order by author's last name.
  • Works with the same set of authors are arranged by date, starting with the oldest.
  • This section lists works in which the first author's name begins with E.
  • The full list of sections is: A Ba Bi Ca Ci D E F G H I J K L M N O P Q R Sa Sl T U V W X Y Z.
  • For further information, see the main page for Works Citing OEIS.

References

  1. Jason Earls, A note on the Smarandache divisors of divisors sequence and two similar sequences, Smarand. Notions J. 14 (1) (2004) 274-275. See also PDF (A009287, A075721)
  2. Jason Earls, On Smarandache repunit n numbers, in Smarandache Notions Journal (2004), Vol. 14.1, pp 251-258. PDF. (A068817, A075842, A075858, A075859)
  3. Jason Earls, Smarandache iterations of the first kind on functions involving divisors and prime factors, Smarand. Notions J. 14 (1) (2004) 259-264. See also PDF (A060682, A074347, A074348, A075660, A075661, A074348)
  4. Jason Earls, Some Smarandache-type sequences and problems concerning abundant and deficient numbers, Smarand. Notions J. 14 (1) (2004) 265-270. See also PDF (A074037)
  5. Jason Earls, The Smarandache sum of composites between factors function, in Smarandache Notions Journal (2004), Vol. 14.1, pp 243-250. PDF. (A000203, A000396, A002034, A005101, A011772)
  6. E. Early, Chain Lengths in the Dominance Lattice, 2002. Presented at FPSAC '03. Discrete Math., 313 (2013), 2168-2177.
  7. Edward Early, Chain Lengths in the Dominance Lattice, June 8, 2013; http://myweb.stedwards.edu/edwarde/partitions.pdf
  8. Nick Early, Combinatorics and Representation Theory for Generalized Permutohedra I: Simplicial Plates, arXiv preprint arXiv:1611.06640, 2016
  9. Nick Early, Generalized Permutohedra, Scattering Amplitudes, and a Cubic Three-Fold, arXiv:1709.03686 [math.CO], 2017
  10. Nick Early, Canonical Bases for Permutohedral Plates, arXiv:1712.08520 [math.CO], 2017. (A079641)
  11. J. East, R. D. Gray, Idempotent generators in finite partition monoids and related semigroups, arXiv preprint arXiv:1404.2359, 2014
  12. James East, Jitender Kumar, James D. Mitchell, Wilf A. Wilson, Maximal subsemigroups of finite transformation and diagram monoids, arXiv:1706.04967 [math.GR], 2017. (A000045, A000225, A000931, A008472, A016116, A052955, A059957, A083399, A131520, A131898, A290140, A290289, A290938)
  13. James East, Ron Niles, Integer polygons of given perimeter, arXiv preprint arXiv:1710.11245, 2017
  14. James East, A Vernitski, Ranks of ideals in inverse semigroups of difunctional binary relations, arXiv preprint arXiv:1612.04935, 2016
  15. M. Eastwood, The X-ray transform on projective space
  16. MICHAEL EASTWOOD AND HUBERT GOLDSCHMIDT, Zero-energy fields on complex projective space, arXiv:1108.1602, 2011
  17. Sean Eberhard, F Manners, R Mrazovic, Additive triples of bijections, or the toroidal semiqueens problem, arXiv preprint arXiv:1510.05987, 2015
  18. Kurusch Ebrahimi-Fard and Dominique Manchon, Dendriform Equations (2008); arXiv:0805.0762
  19. Edel, Yves; Elsholtz, Christian; Geroldinger, Alfred; Kubertin, Silke; Rackham, Laurence, Zero-sum problems in finite abelian groups and affine caps. Q. J. Math. 58 (2007), no. 2, 159-186.
  20. A. Edelman, M. La Croix, The Singular Values of the GUE (Less is More), arXiv preprint arXiv:1410.7065, 2014
  21. G. A. Edgar, Transseries for beginners, arXiv:0801.4877.
  22. Tom Edgar, Totienomial Coefficients, INTEGERS, 14 (2014), #A62.
  23. Tom Edgar, On the number of hyper m-ary partitions, Integers (2018) 18, Article #A47. Abstract (A002487)
  24. Tom Edgar, Hailey Olafson, James Van Alstine, APPROXIMATING THE FIBONACCI SEQUENCE, Integers 16 (2016), #A63.
  25. Tom Edgar and Michael Z. Spivey, Multiplicative functions, generalized binomial coefficients, and generalized Catalan numbers, Journal of Integer Sequences, Vol. 19 (2016), Article 16.1.6.
  26. A. L. Edmonds and S, Klee, The combinatorics of hyperbolized manifolds, arXiv preprint arXiv:1210.7396, 2012
  27. Charles C. Edmunds, Edmond W. H. Lee, Ken W. K. Lee, Small semigroups generating varieties with continuum many subvarieties, Order 27 (2010) 83-100; doi:10.1007/s11083-010-9142-8
  28. Marcia Edson, Scott Lewis and Omer Yayenie, THE K-PERIODIC FIBONACCI SEQUENCE AND AN EXTENDED BINET'S FORMULA, INTEGERS 11 (2011) #A32.
  29. K. Edwards, A Pascal-like triangle related to the tribonacci numbers, Fib. Q., 46/47 (2008/2009), 18-25.
  30. K. Edwards, M. A. Allen, Strongly restricted permutations and tiling with fences, Discrete Applied Mathematics, Volume 187, 31 May 2015, Pages 82–90 ["Finally, we thank Sloane for the OEIS [12] which facilitated our making the connection between fence tilings and strongly restricted permutations."]
  31. Steven Edwards and W. Griffiths, Generalizations of Delannoy and cross polytope numbers, Fib. Q., 55 (2017), 356-366.
  32. Dmitry Efimov, Determinants of generalized binary band matrices, arXiv:1702.05655 [math.RA], 2017.
  33. A. L. Efros and E. V. Tsiper, An unusual metallic phase in a chain of strongly interacting particles, J. Phys.: Cond. Matt. (Letter) 9, L561-L567 (1997).
  34. S. Eger, The Combinatorics of String Alignments: Reconsidering the Problem, Journal of Quantitative Linguistics, Volume 19, Issue 1, 2012; doi:10.1080/09296174.2011.638792
  35. S. Eger, Restricted Weighted Integer Compositions and Extended Binomial Coefficients, Journal of Integer Sequences, 16 (2013), #13.1.3.
  36. S. Eger, Stirling's Approximation for Central Extended Binomial Coefficients, American Mathematical Monthly, 121 (2014), 344-349.
  37. Steffen Eger, On the Number of Many-to-Many Alignments of N Sequences, arXiv:1511.00622 [math.CO], 2015.
  38. Eric S. Egge, Restricted colored permutations and Chebyshev polynomials, Discrete Mathematics, Volume 307, Issue 14, 28 June 2007, Pages 1792-1800.
  39. Eric S. Egge, Defying God: The Stanley-Wilf Conjecture, Stanley-Wilf Limits, and a Two-Generation Explosion of Combinatorics, pp. 65-82 of "A Century of Advancing Mathematics", ed. S. F. Kennedy et al., MAA Press 2015; http://www.maa.org/sites/default/files/pdf/pubs/books/members/cent_volume.pdf
  40. ES Egge, K Rubin, Snow Leopard Permutations and Their Even and Odd Threads, arXiv preprint arXiv:1508.05310, 2015
  41. Eggleton, Roger B. "Maximal Midpoint-Free Subsets of Integers." International Journal of Combinatorics Volume 2015, Article ID 216475, 14 pages; doi:10.1155/2015/216475;
  42. R. B Eggleton and M. Morayne, A Note on Counting Homomorphisms of Paths, Graphs and Combinatorics November 2012, doi:10.1007/s00373-012-1261-0.
  43. Egorychev, Georgy P.; Zima, Eugene V. Decomposition and group theoretic characterization of pairs of inverse relations of the Riordan type. Acta Appl. Math. 85 (2005), no. 1-3, 93-109.
  44. Georgy P. Egorychev, Eugene V. Zima, Integral Representation and Algorithms for Closed Form Summation, Handbook of Algebra, Volume 5, 2008, Pages 459-529.
  45. M. Egozcue, S. Massoni, W,-K. Wong and R. Zitikis, Integration-segregation decisions under general value functions:"Create your own bundle-choose 1, 2, or all 3!", Documents de Travail du Centre d'Economie de la Sorbonne, #2012.57, 2012; ftp://iae.univ-paris1.fr/pub/mse/CES2012/12057.pdf
  46. Tohru Eguchi, Kazuhiro Hikami, Superconformal Algebras and Mock Theta Functions (2008) arXiv:0812.1151
  47. Richard Ehrenborg and N. Bradley Fox, The Descent Set Polynomial Revisited, arXiv:1408.6851, 2014
  48. R. Ehrenborg, S. Kitaev, E. Steingrimsson, Number of cycles in the graph of 312-avoiding permutations, arXiv preprint arXiv:1310.1520, 2013
  49. D. Ehrmann, Z. Higgins, V. Nitica, The Geometric Structure of Max-Plus Hemispaces, arXiv preprint arXiv:1402.2857, 2014
  50. Omer I. Eid, Ramanujan-Nagell Equation: A Simple Solution, Journal of American Science, 2015;11(7), http://www.jofamericanscience.org
  51. S. Eilers, The LEGO counting problem, Amer. Math. Mnthly, 123 (May 2016), 415-426.
  52. Søren Eilers and Rune Johansen, Introduction to Experimental Mathematics, 1st ed., Cambridge University Press, 2017, ISBN-10: 1107156130.
  53. C Elsholtz, G Harman, On Conjectures of T. Ordowski and ZW Sun Concerning Primes and Quadratic Forms, in C. Pomerance and M. T. Rassias, eds., Anaytic Number Theory, Springer 2015, pp. 65-81.
  54. Eising, Jaap, David Radcliffe, and Jaap Top. "A Simple Answer to Gelfand’s Question." The American Mathematical Monthly 122.03 (2015): 234-245.
  55. Rob Eisinga, Rainer Breitling and Tom Heskes, The exact probability distribution of the rank product statistics for replicated experiments, FEBS Letters, 2013, 587: 677-682, doi:10.1016/j.febslet.2013.01.037
  56. Rob Eisinga, Tom Heskes, Ben Pelzer and Manfred Te Grotenhuis, Exact p-values for pairwise comparison of Friedman rank sums, with application to comparing classifiers, BMC Bioinformatics (2017) 18:68 doi:10.1186/s12859-017-1486-2
  57. Remi Eismann, Decompostion into weight * level + jump and application to a new classification of primes (2007), arXiv:0711.0865.
  58. T. Eisner and R. Nagel, Arithmetic progressions-an operator theoretic view, Discrete and continuous dynamical systems series S, Volume 6, Number 3, June 2013 pp. 657-667; doi:10.3934/dcdss.2013.6.657
  59. Bryan Ek, Lattice Walk Enumeration, arXiv:1803.10920 [math.CO], 2018. (A001764, A002293, A060941, A293946, A300386, A300387, A300388, A300389, A300390, A300391, A300998, A301379, A301380, A301381)
  60. Bryan Ek, Unimodal Polynomials and Lattice Walk Enumeration with Experimental Mathematics, arXiv:1804.05933 [math.CO], 2018. (A000984, A001764, A002293, A002522, A060941, A293946, A300386, A300387, A300388, A300389, A300390, A300391, A300998, A301379, A301380, A301381, A301386, A302612, A302644, A302645, A302646)
  61. Shalosh B. Ekhad, Automated Generation of Anomalous Cancellations, arXiv:1709.03379 [math.HO], 2017.
  62. Shalosh B. Ekhad, Nathaniel Shar, and Doron Zeilberger, The number of 1...d-avoiding permutations of length d+r for SYMBOLIC d but numeric r, arXiv:1504.02513, 2015.
  63. Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, A Meta-Algorithm for Creating Fast Algorithms for Counting ON Cells in Odd-Rule Cellular Automata, arXiv:1503.01796, 2015.
  64. Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, Odd-Rule Cellular Automata on the Square Grid, arXiv:1503.043249, 2015.
  65. Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, Automated Proof (or Disproof) of Linear Recurrences Satisfied by Pisot Sequences, arXiv:1609.05570, 2016.
  66. Shalosh B. EKHAD and Mingjia YANG, Automated Proofs of Many Conjectured Recurrences in the OEIS made by R.J. Mathar, HTML, July, 2017, arXiv:1707.04654
  67. S. B. Ekhad and D. Zeilberger, Proof of Conway's Lost Cosmological Theorem, Electronic Research Announcements of the Amer. Math. Soc. 3 (1997) 78-82.
  68. Shalosh B. Ekhad and Doron Zeilberger, "There are More Than 2n/17 n-Letter Ternary Square-Free Words", J. Integer Sequences, Volume 1, 1998, Article 98.1.9.
  69. Shalosh B. EKHAD and Doron ZEILBERGER, Automatic Solution of Richard Stanley's Amer. Math. Monthly Problem #11610 and ANY Problem of That Type, Arxiv preprint arXiv:1112.6207, 2011
  70. S. B. Ekhad and D. Zeilberger, Computational and Theoretical Challenges on Counting Solid Standard Young Tableaux, Arxiv preprint arXiv:1202.6229, 2012
  71. Shalosh B. EKHAD and Doron ZEILBERGER, Automatic Counting of Tilings of Skinny Plane Regions, Arxiv preprint arXiv:1206.4864, 2012
  72. Shalosh B. Ekhad, Doron Zeilberger, How to generate as many Somos-like miracles as you wish, arXiv:1303.5306
  73. Shalosh B. Ekhad and Doron Zeilberger, Automatic Proofs of Asymptotic Abnormality (and much more!) of Natural Statistics Defined on Catalan-Counted Combinatorial Families, arXiv:1403.5664, 2014.
  74. Shalosh B. Ekhad and Doron Zeilberger, Enumerative Geometrical Genealogy (Or: The Sex Life of Points and Lines), arXiv:1406.5157, 2014.
  75. Shalosh B. Ekhad, Doron Zeilberger, There are (1/30)(r+1)(r+2)(2r+3)(r^2+3r+5) Ways For the Four Teams of a World Cup Group to Each Have r Goals For and r Goals Against [Thanks to the Soccer Analog of Prop. 4.6.19 of Richard Stanley's (Classic!) EC1], arXiv:1407.1919, 2014.
  76. Shalosh B. EKHAD and Doron ZEILBERGER, The Generating Functions Enumerating 12...d-Avoiding Words with r occurrences of each of 1 , . . . , n are D-finite for all d and all r, http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimPDF/sloane75.pdf, 2014; also arXiv preprint arXiv:1412.2035, 2014
  77. S. B. Ekhad, D. Zeilberger, The Method(!) of GUESS and CHECK, arXiv preprint arXiv:1502.04377, 2015
  78. SB Ekhad, D Zeilberger, Explicit Expressions for the Variance and Higher Moments of the Size of a Simultaneous Core Partition and its Limiting Distribution, arXiv preprint arXiv:1508.07637, 2015
  79. SB Ekhad, D Zeilberger, Computerizing the Andrews-Fraenkel-Sellers Proofs on the Number of m-ary partitions mod m (and doing MUCH more!), arXiv preprint arXiv:1511.06791, 2015
  80. SB Ekhad, D Zeilberger, On the number of Singular Vector Tuples of Hyper-Cubical Tensors, arXiv preprint arXiv:1605.00172, 2016
  81. Shalosh B. Ekhad, Doron Zeilberger, Going Back to Neil Sloane's FIRST LOVE (OEIS Sequence A435): On the Total Heights in Rooted Labeled Trees, arXiv preprint arXiv:1607.05776, 2016
  82. SB Ekhad, D Zeilberger, A Treatise on Sucker's Bets, arXiv preprint arXiv:1710.10344, 2017
  83. Shalosh B. Ekhad, Doron Zeilberger, D. H. Lehmer's Tridiagonal determinant: An Etude in (Andrews-Inspired) Experimental Mathematics, arXiv:1808.06730 [math.CO], 2018. (A003116, A039924) We learned about Lehmer's Theorem 1 via serendipity, thanks to that amazing tool that we are so lucky to have, the On-Line Encyclopedia of Integer Sequences [S] (OEIS). ... the present paper is yet another paper that owes its existence to the OEIS!
  84. el Houcein el Abdalaoui, Mohamed Dahmoune and Djelloul Ziadi, On the transition reduction problem for finite automata, arXiv preprint arXiv:1301.3751, 2013
  85. Mohamed El Bachraoui and Florian Luca, On a Diophantine equation of Ayad and Kihel, Quaestiones Mathematicae, Volume 35, Issue 2, pages 235-243, 2012; doi:10.2989/16073606.2012.697265
  86. B. S. El-Desouky, N. P. Cakic, T. Mansour, Modified approach to generalized Stirling numbers via differential operators, Appl. Math. Lett. 23 (2010) 115-120 doi:10.1016/j.aml.2009.08.018
  87. Miriam Mahannah El-Farrah, Expectation Numbers of Cyclic Groups, MS Thesis, Western Kentucky University, August 2015; http://digitalcommons.wku.edu/cgi/viewcontent.cgi?article=2520&context=theses
  88. M. El-Mikkawy, T. Sogabe, A new family of k-Fibonacci numbers, Appl. Math. Comput. 215 (2010) 4456-4461 doi:10.1016/j.amc.2009.12.069
  89. Murray Elder, Cogrowth, http://carma.newcastle.edu.au/pdf/retreat2011/posters/MurrayElder-poster-A0.pdf.
  90. M. Elder, E. Fusy, A. Rechnitzer, Counting elements and geodesics in Thompson's Group F, J. Alg. 324 (2010) 102-121 doi:10.1016/j.jalgebra.2010.02.035
  91. M. Elder, A. Kalka, Logspace computations for Garside groups of spindle type, arXiv preprint arXiv:1310.0933, 2013
  92. M. Elder, A. Rechnitzer, E. J. van Rensburg, T. Wong, The cogrowth series for BS(N, N) is D-finite, arXiv preprint arXiv:1309.4184, 2013
  93. M. Elhamdadi, Distributivity in Quandles and Quasigroups, arXiv preprint arXiv:1209.6518, 2012
  94. Elhamdadi, Mohamed; Macquarrie, Jennifer; Restrepo, Ricardo Automorphism groups of quandles. J. Algebra Appl. 11 (2012), no. 1, 1250008, 9 pp.
  95. Michele Elia, F Pintore, On the Representation of Primes by Binary Quadratic Forms, and Elliptic Curves, arXiv preprint arXiv:1604.06586, 2016
  96. S. Eliahou and M. J. Erickson, Mutually describing multisets and integer partitions, Discrete Mathematics, Volume 313, Issue 4, 28 February 2013, Pages 422-433.
  97. B. Elias, N. Proudfoot, M. Wakefield, The Kazhdan-Lusztig polynomial of a matroid, http://pages.uoregon.edu/njp/kl.pdf, 2014
  98. Sergi Elizalde, Generating trees for permutations avoiding generalized patterns (2007), arXiv:0707.4633; Annals of Combinatorics, Volume 11, Numbers 3-4 / December, 2007.
  99. Sergi Elizalde, Continued fractions for permutation statistics, arXiv:1703.08742 [math.CO], 2017.
  100. Sergi Elizalde and Toufik Mansour, Restricted Motzkin permutations, Motzkin paths, continued fractions and Chebyshev polynomials (2006), arXiv:math/0610237.
  101. A. Elizarov, A. Kirillovich, E. Lipachev, O. Nevzorova, et al., Mathematical Knowledge Representation: Semantic Models and Formalisms, arXiv preprint arXiv:1408.6806
  102. Seymour B. Elk, Enumeration of the set of saturated compounds that, in theory, could be formed by the linear fusion of regular pentagonal modules, including the logical extrapolation to helicanes, Journal of Molecular Structure: THEOCHEM, Volume 201, November 1989, Pages 75-86.
  103. Elkies, Noam D. New directions in enumerative chess problems. Electron. J. Combin. 11 (2004/06), no. 2, Article 4, 14 pp.
  104. N. D. Elkies and R. P. Stanley, The mathematical knight, Math. Intelligencer, 25 (No. 1, 2003), 22-34. (PDF) doi:10.1007/BF02985635
  105. David Ellerman, The number of direct-sum decompositions of a finite vector space, arXiv preprint arXiv:1603.07619, 2016
  106. David Ellerman, The Quantum Logic of Direct-Sum Decompositions, arXiv preprint arXiv:1604.01087, 2016
  107. G. Ellis and F. Lehmann, Exploiting the Induced Order on Type-Labeled Graphs for Fast Knowledge Retrieval, ICCS 1994, 293-310.
  108. C. Elsholtz, C. Heuberger, H. Prodinger, The number of Huffman codes, compact trees, and sums of unit fractions, arXiv:1108.5964
  109. Carsten Elsner, Dominic Klyve and Erik R. Tou, A zeta function for juggling sequences, Journal of Combinatorics and Number Theory, Volume 4, Issue 1, 2012, pp. 1-13; ISSN 1942-5600
  110. Andrew Elvey-Price and Anthony J. Guttmann, Permutations sortable by deques and by two stacks in parallel, arXiv:1508.02273 2015.
  111. Cees H. Elzinga, M. Studer, Normalization of Distance and Similarity in Sequence Analysis in G. Ritschard & M. Studer (eds), Proceedings of the International Conference on Sequence Analysis and Related Methods, Lausanne, June 8-10, 2016, pp 445-468.
  112. Nathaniel D. Emerson, "A Family of Meta-Fibonacci Sequences Defined by Variable-Order Recursions", J. Integer Sequences, Volume 9, 2006, Article 06.1.8.
  113. James Emery, Number Theory, 2013; http://www.stem2.org/je/numbertheory.pdf
  114. Emmons, Caleb; Krebs, Mike; Shaheen, Anthony K-quasiderivations. Cent. Eur. J. Math. 10 (2012), no. 2, 824-834.
  115. Melissa Emory, The Diophantine equation X^4 + Y^4 = D^2 Z^4 in quadratic fields, INTEGERS 12 (2012), #A65.
  116. J. Endrullis, D. Hendriks and J. W. Klop. Degrees of streams, http://www.cs.vu.nl/~diem/publication/pdf/degrees.pdf, Integers 11B (2011) #A06 HTML
  117. John Engbers, David Galvin, Cliff Smyth, Restricted Stirling and Lah number matrices and their inverses, 2017. PDF (A001147, A001813, A001818, A100861, A292750)
  118. John Engbers, D Galvin, C Smyth, Restricted Stirling and Lah numbers and their inverses, arXiv preprint arXiv:1610.05803, 2016
  119. John Engbers and Christopher Stocker, TWO COMBINATORIAL PROOFS OF IDENTITIES INVOLVING SUMS OF POWERS OF BINOMIAL COEFFICIENTS, Integers 16 (2016), #A58.
  120. Andreas Enge, William Hart, Fredrik Johansson (LFANT) Short addition sequences for theta functions, arXiv:1608.06810 [math.NT], (24-August-2016)
  121. Matthew England, James H Davenport, The complexity of cylindrical algebraic decomposition with respect to polynomial degree, arXiv preprint arXiv:1605.02494, 2016
  122. S. Engstrom, Random acyclic orientations of graphs, Master's thesis written at the department of Mathematics at the Royal Institute of Technology (KTH) in Stockholm, Jan. 2013; http://www.sci.kth.se/polopoly_fs/1.364961!/Menu/general/column-content/attachment/final_3_Random%20orientations.pdf.
  123. Enkosky, Thomas Counting points of slope varieties over finite fields. Electron. J. Combin. 18 (2011), no. 1, Paper 3, 11 pp.
  124. T. Enkosky, B. Stone, Sequences defined by h-vectors, arXiv preprint arXiv:1308.4945, 2013
  125. Anton S. Epifanov, Regularization, Recognition and Complexity Estimation Methods of Automata Models of Discrete Dynamical Systems in Control Problem, in American Journal of Management Science and Engineering (2017), Vol. 2, No. 5, pp. 106-116. doi:10.11648/j.ajmse.20170205.14, see also PDF.
  126. David Eppstein, Faster Evaluation of Subtraction Games, Proceedings of the 9th International Conference on Fun with Algorithms (FUN 2018), Leibniz International Proceedings in Informatics, arXiv:1804.06515 [cs.DS], 2018. (A014586, A030193)
  127. David Eppstein, Making Change in 2048, arXiv:1804.07396 [cs.DM], 2018, also doi:10.4230/LIPIcs.FUN.2018.21. (A000040, A000045, A000079, A000225, A002450, A003586, A005153, A029744, A052549, A098011, A126684, A257113, A296840, A302757)
  128. Peter L. Erdos, I Miklós, Z Toroczkai, New classes of degree sequences with fast mixing swap Markov chain sampling, arXiv preprint arXiv:1601.08224, 2016
  129. Gennady Eremin, Factoring a Catalan Number into Chebyshev's Segments, 2016; http://eremin.magekit.com/catalan-cheb-2016-en.pdf
  130. Gennady Eremin, Multilayer Factorization of Catalan Numbers, Preprint 2016; http://eremin.magekit.com/catalan-multilayer-2016.pdf
  131. Aysel Erey, Zachary Gershkoff, Amanda Lohss, Ranjan Rohatgi, Characterization and enumeration of 3-regular permutation graphs, arXiv:1709.06979 [math.CO], 2017.
  132. L. Ericksen, Iterated digit sums, recursions and primality, Acta Math. Univ. Ostrav. 14 (2006) 27-35
  133. L. Ericksen, Lattice path combinatorics for multiple product identities, J. Stat. Plan. Infer. 140 (2010) 2213-2226 doi:10.1016/j.jspi.2010.01.017
  134. LARRY ERICKSEN AND PETER G. ANDERSON, PATTERNS IN DIFFERENCES BETWEEN ROWS IN k-ZECKENDORF ARRAYS, PDF 2012
  135. A. Erickson, A. Isgur, B. W. Jackson, F. Ruskey and S. M. Tanny, Nested recurrence relations with Conolly-like solutions; http://webhome.cs.uvic.ca/~ruskey/Publications/MetaFib/ConollyLikeMay14.pdf.
  136. A. Erickson and F. Ruskey, Enumerating maximal tatami mat coverings of square grids with v vertical dominoes, arXiv preprint arXiv:1304.0070, 2013
  137. Alejandro Erickson and Mark Schurch, Monomer-dimer tatami tilings of square regions, Arxiv preprint arXiv:1110.5103, 2011
  138. Alejandro Erickson and Mark Schurch, Enumerating tatami mat arrangements of square grids, in 22nd International Workshop on Combinatorial Algorithms, University of Victoria, June 20-22, volume 7056 of Lecture Notes in Computer Science (LNCS), Springer Berlin / Heidelberg, 2011, pp. 223-235, doi:10.1007/978-3-642-25011-8_18
  139. N. Eriksen, Expected number of inversions after a sequence of random adjacent transpositions - an exact expression , Discr. Math., 298 (2005), 155-168. ("For the proof of Lemma 9, the author is indebted to Axel Hultman and Sloane's On-Line Encyclopedia of Integer Sequences")
  140. H. Eriksson, A. Martin, Enumeration of Carlitz multipermutations, arXiv:1702.04177 (2017)
  141. Mutiu F. Erinosho, ET Akinlabi, S Pityana, Effect of scanning speed and powder flow rate on the evolving properties of laser metal deposited Ti-6Al-4V/Cu composites, International Journal of Surface Science and Engineering, Volume 10, Issue 3, 2016; doi:10.1504/IJSURFSE.2016.076993
  142. Anne-Maria Ernvall-Hytönen, Tapani Matala-aho, Louna Seppälä, On Mahler's transcendence measure for e, arXiv:1704.01374 [math.NT], 2017.
  143. Ernvall-Hytönen, Anne-Maria; Matomäki, Kaisa; Haukkanen, Pentti; Merikoski, Jorma K. Formulas for the number of gridlines. Monatsh. Math. 164 (2011), no. 2, 157-170 doi:10.1007/s00605-010-0236-6
  144. E Ershov, A Terekhin, D Nikolaev, V Postnikov, et al., Fast Hough transform analysis: pattern deviation from line segment, Proc. SPIE 9875, Eighth International Conference on Machine Vision (ICMV 2015), 987509 (December 8, 2015); doi:10.1117/12.2228852
  145. Grahame Erskine, Diameter, girth and other properties of highly symmetric graphs, Dissertation, The Open University, Milton Keynes, UK, 2017.
  146. W. Ertel, Advanced Mathematics for Engineers, 2011; PDF
  147. Josef Eschgfäller, A Scarpante, Dichotomic random number generators, arXiv preprint arXiv:1603.08500, 2016
  148. E. Estrada and J. A. de la Pena, From Integer Sequences to Block Designs via Counting Walks in Graphs, arXiv preprint arXiv:1302.1176, 2013
  149. E. Estrada and J. A. de la Pena, Integer sequences from walks in graphs, Notes on Number Theory and Discrete Mathematics, Vol. 19, 2013, No. 3, 78-84
  150. Boumediene Et-Taoui, Complex Conference Matrices, Complex Hadamard Matrices and Complex Equiangular Tight Frames, in Convexity and Discrete Geometry Including Graph Theory, pp 181-191, Springer 2016; doi:10.1007/978-3-319-28186-5_16
  151. S. N. Ethier, Counting toroidal binary arrays, arXiv preprint arXiv:1301.2352, 2013 and J. Int. Seq. 16 (2013) #13.4.7
  152. S. N. Ethier and J. Lee, Parrondo games with spatial dependence, Arxiv preprint arXiv:1202.2609, 2012
  153. S. N. Ethier, J. Lee, Counting toroidal binary arrays, II, arXiv preprint arXiv:1502.03792, 2015 and <a href="https://cs.uwaterloo.ca/journals/JIS/VOL18/Lee/lee6.html">J. Int. Seq. 18 (2015) # 15.8.3</a>
  154. S. N. Ethier, J Lee, Parrondo games with two-dimensional spatial dependence, arXiv preprint arXiv:1510.06947, 2015
  155. T. Etzion, On the stopping redundancy of Reed-Muller codes, arXiv:cs.IT/0511056, IEEE Trans. Inform. Theory 52 (2006), no. 11, 4867-4879.
  156. Eu, Sen-Peng; Fu, Tung-Shan, A simple proof of the Aztec diamond theorem. Electron. J. Combin. 12 (2005), Research Paper 18, 8 pp.
  157. Sen-Peng Eu, Tung-Shan Fu, Lattice paths and generalized cluster complexes, Journal of Combinatorial Theory, Series A, Volume 115, Issue 7, October 2008, Pages 1183-1210.
  158. Sen-Peng Eu, Tung-Shan Fu, Yu-Chang Liang, Tsai-Lien Wong, On xD-Generalizations of Stirling Numbers and Lah Numbers via Graphs and Rooks, Electronic Journal of Combinatorics 24(2) (2017), #P2.9, arXiv preprint arXiv:1701.00600
  159. Sen-Peng Eu, Tung-Shan Fu and Yeh-Jong Pan, A combinatorial proof of the cyclic sieving phenomenon for faces of Coxeterhedra, Journal of Combinatorial Optimization, 2012.
  160. S.-P. Eu, T.-S. Fu, Y.-J. Pan and C.-T. Ting, Baxter Permutations, Maj-balances, and Positive Braids, Electronic Journal of Combinatorics, 19(3) (2012), #P26
  161. Eu, Sen-Peng; Liu, Shu-Chung; Yeh, Yeong-Nan, Dyck paths with peaks avoiding or restricted to a given set. Stud. Appl. Math. 111 (2003), no. 4, 453-465.
  162. Eu, Sen-Peng; Liu, Shu-Chung; Yeh, Yeong-Nan, Odd or even on plane trees. Discrete Math. 281 (2004), no. 1-3, 189-196.
  163. Eu, Sen-Peng; Liu, Shu-Chung; Yeh, Yeong-Nan, On the congruences of some combinatorial numbers. Stud. Appl. Math. 116 (2006), no. 2, 135-144.
  164. Reinhardt Euler, "The Fibonacci Number of a Grid Graph and a New Class of Integer Sequences", J. Integer Sequences, Volume 8, 2005, Article 05.2.6.
  165. R. Euler, P. Oleksik, Z. Skupien, Counting Maximal Distance-Independent Sets in Grid Graphs, Discussiones Mathematicae Graph Theory. Volume 33, Issue 3, Pages 531-557, ISSN (Print) 2083-5892, doi:10.7151/dmgt.1707, July 2013.
  166. David E. Evans, Mathew Pugh, Spectral measures associated to rank two Lie groups and finite subgroups of GL(2,Z), arXiv preprint arXiv:1404.1877, 2014
  167. Jonathan D. Evans, I Smith, Markov numbers and Lagrangian cell complexes in the complex projective plane, arXiv preprint arXiv:1606.08656, 2016
  168. Ryan M. Evans, UN Katugampola, DA Edwards, Applications of fractional calculus in solving Abel-type integral equations: Surface-volume reaction problem, arXiv preprint arXiv:1510.00408, 2015
  169. G. Everest, arXiv:math.NT/0409540 Zsigmondy's Theorem for Elliptic Curves], 2002.
  170. G. Everest, A. J. van der Poorten, Y. Puri and T. Ward, "Integer Sequences and Periodic Points", J. Integer Sequences, Volume 5, 2002, Article 02.2.3.
  171. G. Everest, A. van der Poorten, I. Shparlinski and T. Ward , Recurrence Sequences, Amer. Math. Soc., 2003.
  172. C. J. Everett and P. R. Stein, The combinatorics of random walk with absorbing barriers, Discrete Mathematics, Volume 17, Issue 1, 1977, Pages 27-45.
  173. Jackson Evoniuk, Steven Klee, Van Magnan, Enumerating Minimal Length Lattice Paths, J. Int. Seq., Vol. 21 (2018), Article 18.3.6. HTML (A000108, A001006, A007318, A009766, A292435, A292436, A292437)
  174. Martianus Frederic Ezerman, Bertrand Meyer and Patrick Sole, On Polynomial Pairs of Integers, arXiv:1210.7593. 2012.

About this page

  • This is part of the series of OEIS Wiki pages that list works citing the OEIS.
  • Additions to these pages are welcomed.
  • But if you add anything to these pages, please be very careful — remember that this is a scientific database. Spell authors' names, titles of papers, journal names, volume and page numbers, etc., carefully, and preserve the alphabetical ordering.
  • If you are unclear about what to do, contact one of the Editors-in-Chief before proceeding.
  • Works are arranged in alphabetical order by author's last name.
  • Works with the same set of authors are arranged by date, starting with the oldest.
  • The full list of sections is: A Ba Bi Ca Ci D E F G H I J K L M N O P Q R Sa Sl T U V W X Y Z.
  • For further information, see the main page for Works Citing OEIS.