login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A052763 Number of rooted trees with n nodes and 4-colored non-root nodes. 5
0, 1, 4, 26, 188, 1499, 12628, 111064, 1006840, 9345761, 88371580, 848273424, 8244075700, 80959901281, 802137370804, 8008422811882, 80488941119484, 813703130213745, 8268866850613468, 84417609311862182, 865408913186449784, 8905028017997573696 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Previous name was: A simple grammar.

Number of rooted trees with 4-colored non-root nodes. (Christian G. Bower, Sep 07 2002)

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 0..950

L. Foissy, Algebraic structures on typed decorated rooted trees, arXiv:1811.07572 (2018)

INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 720

Index entries for sequences related to rooted trees

FORMULA

a(n) ~ c * d^n / n^(3/2), where d = 11.0699628777593263124193026233177403862890348..., c = 0.1016234204063820357399566577477318256736416... . - Vaclav Kotesovec, Aug 26 2014

G.f. A(x) satisfies: A(x) = x*exp(4*Sum_{k>=1} A(x^k)/k). - Ilya Gutkovskiy, Mar 19 2018

MAPLE

spec := [S, {B=Set(S), S=Prod(Z, B, B, B, B)}, unlabeled]: seq(combstruct[count](spec, size=n), n=0..20);

with(numtheory):

a:= proc(n) option remember; `if`(n<2, n, (add(add(d*

      a(d), d=divisors(j))*a(n-j)*4, j=1..n-1))/(n-1))

    end:

seq(a(n), n=0..25); # Vaclav Kotesovec, Aug 26 2014 after Alois P. Heinz

MATHEMATICA

a[n_] := a[n] = If[n<2, n, Sum[Sum[d*a[d], {d, Divisors[j]}]*a[n-j]*4, {j, 1, n-1}]/(n-1)]; Table[a[n], {n, 0, 25}] (* Jean-Fran├žois Alcover, Feb 24 2016, adapted from Maple *)

CROSSREFS

Column k=4 of A242249.

Sequence in context: A052775 A137964 A107649 * A213101 A084211 A114496

Adjacent sequences:  A052760 A052761 A052762 * A052764 A052765 A052766

KEYWORD

easy,nonn,eigen

AUTHOR

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

EXTENSIONS

New name from Vaclav Kotesovec, Aug 26 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 20 14:54 EST 2019. Contains 329337 sequences. (Running on oeis4.)