

A051890


a(n) = 2*(n^2  n + 1).


40



2, 2, 6, 14, 26, 42, 62, 86, 114, 146, 182, 222, 266, 314, 366, 422, 482, 546, 614, 686, 762, 842, 926, 1014, 1106, 1202, 1302, 1406, 1514, 1626, 1742, 1862, 1986, 2114, 2246, 2382, 2522, 2666, 2814, 2966, 3122, 3282, 3446, 3614, 3786, 3962
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

Draw n ellipses in the plane (n > 0), any 2 meeting in 4 points; sequence gives number of regions into which the plane is divided (cf. A014206).
Least k such that Z(k,2) <= Z(n,3) where Z(m,s) = Sum_{i>=m} 1/i^s = zeta(s)  Sum_{i=1..m1} 1/i^s.  Benoit Cloitre, Nov 29 2002
For n > 2, third diagonal of A154685.  Vincenzo Librandi, Aug 06 2010
a(k) is also the Moore lower bound A198300(k,6) on the order A054760(k,6) of a (k,6)cage. Equality is achieved if and only if there exists a finite projective plane of order k  1. A sufficient condition for this is that k  1 be a prime power.  Jason Kimberley, Oct 17 2011 and Jan 01 2013
From Jess Tauber, May 20 2013: (Start)
For neutron shell filling in spherical atomic nuclei, this sequence shows numerical differences between filled spinsplit suborbitals sharing all quantum numbers except the principal quantum number n, and here all n's must differ by 1. Only a small handful of exceptions exist.
This sequence consists of summed pairs of every other doubled triangular number. It also can be created by taking differences between nuclear magic numbers from the harmonic oscillator (HO)(doubled tetrahedral) set and the spinorbit (SO) set (2,6,14,28,50,82,126,184,...), with either set being larger. So SOHO: 20=2, 60=6, 140=14, 282=26, 508=42, 8220=62, 12640=86, 18470=114, and HOSO: 20=2, 82=6, 206=14, 4014=26, 7028=42, 11250=62, 16882=86, 240126=114. From the perspective of idealized HO periodic structure, with suborbitals in order from largest to smallest spin, alternating by parity, the HOSO set is spaced two period analogs PLUS one suborbital, while the SOHO set is spaced two period analogs MINUS one suborbital. (end)
The known values of f(k,6) and F(k,6) in Brown (1967), Table 1, closely match this sequence.  N. J. A. Sloane, Jul 09 2015
Numbers k such that 2*k  3 is a square.  Bruno Berselli, Nov 08 2017
Numbers written 222 in number base B, including binary with 'digit' 2: 222(2)=14, 222(3)=26, ...  Ron Knott, Nov 14 2017


REFERENCES

J. V. Post, "When Centered Polygonal Numbers are Perfect Squares" preprint.


LINKS

G. C. Greubel, Table of n, a(n) for n = 0..5000
William G. Brown, On Hamiltonian regular graphs of girth six, J. London Math. Soc., 42 (1967): 514520.
Parabola, Problem #Q607, vol. 20, no. 2, 1984, p. 27.
Eric Weisstein's World of Mathematics, Plane Division by Ellipses
Index entries for linear recurrences with constant coefficients, signature (3,3,1).


FORMULA

a(n) = 4*binomial(n, 2) + 2.  Francois Jooste (phukraut(AT)hotmail.com), Mar 05 2003
For n > 2, nearest integer to (Sum_{k>=n} 1/k^3)/(Sum_{k>=n} 1/k^5).  Benoit Cloitre, Jun 12 2003
a(n) = 2*A002061(n).  Jonathan Vos Post, Jun 19 2005
a(n) = 4*n + a(n1)  4 for n > 0, a(0)=2.  Vincenzo Librandi, Aug 06 2010
a(n) = 2*(n^2  n +1) = 2*(n1)^2 + 2(n1) + 2 = 222 read in base n1 (for n > 3).  Jason Kimberley, Oct 20 2011
G.f.: 2*(1  2*x + 3*x^2)/(1  x)^3.  Colin Barker, Jan 10 2012
a(n) = A001844(n1) + 1 = A046092(n1) + 2.  Jaroslav Krizek, Dec 27 2013
E.g.f.: 2*(x^2 + 1)*exp(x).  G. C. Greubel, Jul 14 2017


MAPLE

A051890 := n>2*(n^2n+1); seq(A051890(n) = n=0..50);


MATHEMATICA

Table[2*(n^2  n + 1), {n, 0, 50}] (* G. C. Greubel, Jul 14 2017 *)


PROG

(PARI) a(n)=2*(n^2n+1) \\ Charles R Greathouse IV, Sep 24 2015


CROSSREFS

Cf. A001844, A002061, A014206, A154685.
Moore lower bound on the order of a (k,g) cage: A198300 (square); rows: A000027 (k=2), A027383 (k=3), A062318 (k=4), A061547 (k=5), A198306 (k=6), A198307 (k=7), A198308 (k=8), A198309 (k=9), A198310 (k=10), A094626 (k=11); columns: A020725 (g=3), A005843 (g=4), A002522 (g=5), this sequence (g=6), A188377 (g=7).
Sequence in context: A019101 A233230 A266007 * A071109 A005310 A248096
Adjacent sequences: A051887 A051888 A051889 * A051891 A051892 A051893


KEYWORD

nonn,easy


AUTHOR

Antreas P. Hatzipolakis (xpolakis(AT)otenet.gr), Apr 30 2000


STATUS

approved



