The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A300391 The number of paths of length 8*n from the origin to the line y = 3*x/5 with unit east and north steps that stay below the line or touch it. 1
 1, 7, 525, 58040, 7574994, 1084532963, 164734116407, 26070940600055, 4252443527211637, 709846349042619913, 120679177855928146859, 20822762876863605793639, 3637213213067542990001936, 641912742432770594132245835, 114287840570892852593437353124, 20502971288127330644273350110698 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Equivalent to nonnegative walks from (0,0) to (8*n,0) with step set [1,3], [1,-5]. LINKS M. T. L. Bizley, Derivation of a new formula for the number of minimal lattice paths from (0, 0) to (km, kn) having just t contacts with the line my = nx and having no points above this line; and a proof of Grossman's formula for the number of paths which may touch but do not rise above this line, Journal of the Institute of Actuaries, Vol. 80, No. 1 (1954): 55-62. [Cached copy] Bryan Ek, Lattice Walk Enumeration, arXiv:1803.10920 [math.CO], 2018. Bryan Ek, Unimodal Polynomials and Lattice Walk Enumeration with Experimental Mathematics, arXiv:1804.05933 [math.CO], 2018. FORMULA G.f. f satisfies f = t^7*f^56 - 2*t^6*f^51 + t^6*f^50 - t^6*f^49 + 7*t^6*f^48 + t^5*f^46 - t^5*f^45 - 3*t^5*f^43 + 5*t^5*f^42 - 6*t^5*f^41 + 21*t^5*f^40 - 3*t^4*f^37 - 3*t^4*f^36 + 8*t^4*f^35 + 10*t^4*f^34 - 15*t^4*f^33 + 35*t^4*f^32 - 2*t^3*f^31 + 2*t^3*f^30 - 9*t^3*f^28 + 22*t^3*f^27 + 10*t^3*f^26 - 20*t^3*f^25 + 35*t^3*f^24 + 3*t^2*f^22 + 5*t^2*f^21 - 9*t^2*f^20 + 18*t^2*f^19 + 5*t^2*f^18 - 15*t^2*f^17 + t*(21*t + 1)*f^16 - t*f^15 + 3*t*f^13 - 3*t*f^12 + 5*t*f^11 + t*f^10 - 6*t*f^9 + 7*t*f^8 + 1. From Peter Bala, Jan 03 2019: (Start) O.g.f.: A(x) = exp( Sum_{n >= 1} (1/8)*binomial(8*n, 3*n)*x^n/n ) - Bizley. Recurrence: a(0) = 1 and a(n) = (1/n) * Sum_{k = 0..n-1} (1/8)*binomial(8*n-8*k, 3*n-3*k)*a(k) for n >= 1. (End) EXAMPLE For n=1, the possible walks are EEEEENNN, EEEENENN, EEEENNEN, EEENEENN, EEENENEN, EENEEENN, EENEENEN. CROSSREFS Cf. A001764, A060941, A300386, A300387, A300388, A300389, A300390. Sequence in context: A124899 A056852 A316394 * A126196 A182433 A329368 Adjacent sequences:  A300388 A300389 A300390 * A300392 A300393 A300394 KEYWORD nonn,walk,easy AUTHOR Bryan T. Ek, Mar 05 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 18 03:39 EDT 2020. Contains 337164 sequences. (Running on oeis4.)