login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A292437 a(n) is the number of lattice walks from (0,0) to (3*n,3*n) that use steps in directions {(3,0), (2,1), (1,2), (0,3)} and stay weakly below the line y=x. 1
1, 2, 13, 120, 1288, 15046, 185658, 2380720, 31411376, 423660504, 5814905977, 80956085304, 1140478875656, 16227516683124, 232870988052180, 3366482778363616, 48981220255732960, 716707681487535144, 10539913681632290532, 155697664218428455520, 2309297999296926348448 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..834

Jackson Evoniuk, Steven Klee, Van Magnan, Enumerating Minimal Length Lattice Paths, 2017, also Enumerating Minimal Length Lattice Paths, J. Int. Seq., Vol. 21 (2018), Article 18.3.6.

EXAMPLE

For n=2, the a(2)=13 paths terminating at (6,6) are

(3, 0), (3, 0), (0, 3), (0, 3)

(3, 0), (2, 1), (1, 2), (0, 3)

(3, 0), (2, 1), (0, 3), (1, 2)

(3, 0), (1, 2), (2, 1), (0, 3)

(3, 0), (1, 2), (1, 2), (1, 2)

(3, 0), (0, 3), (3, 0), (0, 3)

(3, 0), (0, 3), (2, 1), (1, 2)

(2, 1), (3, 0), (1, 2), (0, 3)

(2, 1), (3, 0), (0, 3), (1, 2)

(2, 1), (2, 1), (2, 1), (0, 3)

(2, 1), (2, 1), (1, 2), (1, 2)

(2, 1), (1, 2), (3, 0), (0, 3)

(2, 1), (1, 2), (2, 1), (1, 2)

MAPLE

b:= proc(l) option remember; `if`(l=[0$2], 1, add(

      (f-> `if`(min(f)<0 or f[1]<f[2], 0, b(f)))(l-g),

       g=[[3, 0], [2, 1], [1, 2], [0, 3]]))

    end:

a:= n-> b([3*n$2]):

seq(a(n), n=0..25);  # Alois P. Heinz, Dec 09 2017

PROG

(Sage)

S = [[3, 0], [2, 1], [1, 2], [0, 3]]

q = 10

numPathsMat = matrix(q+1, q+1, 0)

for m in [0..q]:

....for n in [0..m]:

........count = 0

........for s in S:

............if n-s[1]>=0 and m-s[0]>=n-s[1]:

................count += numPathsMat[m-s[0], n-s[1]]

........numPathsMat[m, n] = count

........numPathsMat[0, 0] = 1

print numPathsMat.diagonal()

CROSSREFS

Cf. A000108, A007318.

Sequence in context: A209217 A000180 A215715 * A317196 A192460 A004122

Adjacent sequences:  A292434 A292435 A292436 * A292438 A292439 A292440

KEYWORD

nonn,walk

AUTHOR

Steven Klee, Dec 08 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 21 14:57 EDT 2018. Contains 316424 sequences. (Running on oeis4.)