login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A006234 a(n) = n*3^(n-4).
(Formerly M3496)
28
1, 4, 15, 54, 189, 648, 2187, 7290, 24057, 78732, 255879, 826686, 2657205, 8503056, 27103491, 86093442, 272629233, 860934420, 2711943423, 8523250758, 26732013741, 83682825624, 261508830075, 815907549834, 2541865828329 (list; graph; refs; listen; history; text; internal format)
OFFSET

3,2

COMMENTS

For n >= 1 a(n) is also the determinant of the n-3 X n-3 matrix with 4's on the diagonal and 1's elsewhere. - Ahmed Fares (ahmedfares(AT)my-deja.com), May 06 2001

a(n+3)=det(M(n)) where M(n) is the n X n matrix with m(i,i)=4, m(i,j)=i/j for i != j. - Benoit Cloitre, Feb 01 2003

Main diagonal of array defined by m(1,j)=j; m(i,1)=i and m(i,j)=m(i-1,j)+2*m(i-1,j-1) - Benoit Cloitre, Jun 13 2003

a(n+3) is the number of words of length n on {A, B, C, D} with no D appearing anywhere to the right of an A. - Rob Pratt, Aug 04 2004

Number of spanning trees in the book graph of order n-2, i.e., S_{n-2} X P_2 (S_k = the star graph on k nodes) (conjectured). This conjecture is true - see Doslic (2013). - N. J. A. Sloane, Dec 28 2013

a(n+3) = sum of the n-th row of A112626. - Ross La Haye, Jan 11 2006

Conjecture: a(n+2) is the total number of parts used in the compositions of n if the parts can be runs of any length from 1 to n, and contain any integers from 1 to n. (The number of such compositions is given by A000244(n-1).) - Gregory L. Simay, May 27 2017

REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 3..1000

Tomislav Doslic, Planar polycyclic graphs and their Tutte polynomials, Journal of Mathematical Chemistry, Volume 51, Issue 6, 2013, pp. 1599-1607.

Germain Kreweras, Complexité et circuits Eulériens dans les sommes tensorielles de graphes, J. Combin. Theory, B 24 (1978), 202-212.

Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992.

Simon Plouffe, 1031 Generating Functions and Conjectures, Université du Québec à Montréal, 1992.

Eric Weisstein's World of Mathematics, Book Graph

Eric Weisstein's World of Mathematics, Spanning Tree

Index entries for linear recurrences with constant coefficients, signature (6,-9).

FORMULA

G.f.: (1-2x)/(1-3x)^2 - Simon Plouffe in his 1992 dissertation.

G.f.: 2F1(1,4;3;3x). - R. J. Mathar, Aug 09 2015

EXAMPLE

For n=3, the total number of parts is (3+2)3^(3+2-4)=(5)(3)=15 (each part indicated by "[]"): [3]; [2,1]; [1,2]; [2],[1]; [1],[2]; [1,1,1]; [1,1],[1]; [1],[1,1]; [1],[1],[1]. Note that these 15 parts are arranged into 9 = A000244(3-1)compositions. - Gregory L. Simay, May 27, 2017

MATHEMATICA

Table[n 3^(n - 4), {n, 3, 27}] (* or *)

CoefficientList[Series[(1 - 2 x)/(1 - 3 x)^2, {x, 0, 24}], x] (* Michael De Vlieger, May 28 2017 *)

PROG

(MAGMA) [ n*3^(n-4): n in [3..30] ]; // Vincenzo Librandi, Aug 19 2011

(PARI) a(n)=n*3^(n-4) \\ Charles R Greathouse IV, Sep 24 2015

CROSSREFS

Binomial transform of A001792.

Cf. A036290, A050914, A000244.

Sequence in context: A227382 A090326 A291032 * A094821 A071723 A001559

Adjacent sequences:  A006231 A006232 A006233 * A006235 A006236 A006237

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 18 12:34 EDT 2019. Contains 322209 sequences. (Running on oeis4.)