login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000151 Number of oriented rooted trees with n nodes. Also rooted trees with n nodes and 2-colored non-root nodes.
(Formerly M1770 N0701)
11
1, 2, 7, 26, 107, 458, 2058, 9498, 44947, 216598, 1059952, 5251806, 26297238, 132856766, 676398395, 3466799104, 17873508798, 92630098886, 482292684506, 2521610175006, 13233573019372, 69687684810980, 368114512431638, 1950037285256658, 10357028326495097, 55140508518522726, 294219119815868952, 1573132563600386854, 8427354035116949486, 45226421721391554194 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

REFERENCES

F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 286.

S. R. Finch, Mathematical Constants, Cambridge, 2003, p. 307 and 564.

F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 60, R(x).

J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 138.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

N. J. A. Sloane, Table of n, a(n) for n = 1..500

INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 387

P. Leroux and B. Miloudi, Generalisations de la formule d'Otter, Ann. Sci. Math. Quebec 16 (1992), no 1, 53-80.

R. J. Mathar, Topologically Distinct Sets of Non-intersecting Circles in the Plane, arXiv:1603.00077, 2016.

S. G. Wagner, An identity for the cycle indices of rooted tree automorphism groups, Elec. J. Combinat., 13 (2006), #R00.

Index entries for sequences related to rooted trees

Index entries for sequences related to trees

FORMULA

Generating function A(x) = x+2*x^2+7*x^3+26*x^4+... satisfies A(x)=x*exp( 2*sum_{k>=1}(A(x^k)/k) ) [Harary]. - Pab Ter (pabrlos2(AT)yahoo.com), Oct 12 2005

G.f.: x*Product_{n>=1} 1/(1 - x^n)^(2*a(n)) = Sum_{n>=1} a(n)*x^n.

a(n) ~ c * d^n / n^(3/2), where d = A245870 = 5.64654261623294971289271351621..., c = 0.207861597422917421321653492... . - Vaclav Kotesovec, Aug 20 2014

MAPLE

R:=series(x+2*x^2+7*x^3+26*x^4, x, 5); M:=500;

for n from 5 to M do

series(add( subs(x=x^k, R)/k, k=1..n-1), x, n);

t4:=coeff(series(x*exp(%)^2, x, n+1), x, n);

R:=series(R+t4*x^n, x, n+1); od:

for n from 1 to M do lprint(n, coeff(R, x, n)); od: - N. J. A. Sloane, Mar 10 2007

with(combstruct):norootree:=[S, {B = Set(S), S = Prod(Z, B, B)}, unlabeled] :seq(count(norootree, size=i), i=1..30); # with Algolib (Pab Ter)

MATHEMATICA

n = 30; d[x_] = Sum[c[k] x^k, {k, 2, 2 n, 2}];

se = Sum[Series[Sum[(2/m)*d[x^m], {m, 1, n}], {x, 0, 2*n}]^k/k!, {k, 0, n}] - Series[d[x]/x^2, {x, 0, 2*n}];

eq = Thread[CoefficientList[se, x] == 0] // Union // Rest;

Do[so[k] = Solve[eq[[k]]] // First; eq = eq /. so[k], {k, 1, n}]

Table[c[k] , {k, 2, 2 n, 2}] /. Flatten[Array[so, n]]

(* Jean-Fran├žois Alcover, Jun 08 2011, after g.f. *)

CROSSREFS

Cf. A000238, A038055.

Also the self-convolution of A005750. - Paul D. Hanna, Aug 17 2002

Column k=2 of A242249.

Cf. A005751, A245870.

Sequence in context: A150565 A150566 A150567 * A150568 A102319 A006603

Adjacent sequences:  A000148 A000149 A000150 * A000152 A000153 A000154

KEYWORD

nonn,eigen,nice

AUTHOR

N. J. A. Sloane

EXTENSIONS

Extended with alternate description by Christian G. Bower, Apr 15 1998

More terms from Pab Ter (pabrlos2(AT)yahoo.com), Oct 12 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified June 27 19:44 EDT 2017. Contains 288790 sequences.