login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A055874 a(n) = largest m such that 1, 2, ..., m divide n. 15
1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

From Antti Karttunen, Nov 20 2013 & Jan 26 2014: (Start)

Differs from A232098 for the first time at n=840, where a(840)=8, while A232098(840)=7. A232099 gives all the differing positions. See also the comments at A055926 and A232099.

The positions where a(n) is an odd prime is given by A017593 up to A017593(34)=414 (so far all 3's), after which comes the first 7 at a(420). (A017593 gives the positions of 3's.)

(Continued on Jan 26 2014):

Only terms of A181062 occur as values.

A235921 gives such n where a(n^2) (= A235918(n)) differs from A071222(n-1) (= A053669(n)-1).

(End)

a(n) is the largest m such that A003418(m) divides n. - David W. Wilson, Nov 20 2014

a(n) is the largest number of consecutive integers dividing n. - David W. Wilson, Nov 20 2014

A051451 gives indices where record values occur. - Gionata Neri, Oct 17 2015

LINKS

Antti Karttunen, Table of n, a(n) for n = 1..10080

FORMULA

a(n) = A007978(n) - 1. - Antti Karttunen, Jan 26 2014

EXAMPLE

a(12) = 4 because 1, 2, 3, 4 divide 12, but 5 does not.

MAPLE

N:= 1000: # to get a(1) to a(N)

A:= Vector(N, 1);

for m from 2 do

  Lm:= ilcm($1..m);

  if Lm > N then break fi;

  if Lm mod (m+1) = 0 then next fi;

  for k from 1 to floor(N/Lm) do

    A[k*Lm]:=m

  od

od:

convert(A, list); # Robert Israel, Nov 28 2014

MATHEMATICA

a[n_] := Module[{m = 1}, While[Divisible[n, m++]]; m - 2]; Array[a, 100] (* Jean-Fran├žois Alcover, Mar 07 2016 *)

PROG

(Haskell)

a055874 n = length $ takeWhile ((== 0) . (mod n)) [1..]

-- Reinhard Zumkeller, Feb 21 2012, Dec 09 2010

(Scheme)

(define (A055874 n) (let loop ((m 1)) (if (not (zero? (modulo n m))) (- m 1) (loop (+ 1 m))))) ;; Antti Karttunen, Nov 18 2013

(PARI) a(n) = my(m = 1); while ((n % m) == 0, m++); m - 1; \\ Michel Marcus, Jan 17 2014

CROSSREFS

One less than A007978.

Cf. also A053669, A055881, A055926, A017593, A181062, A126800, A232098, A232099, A233284, A235918, A235921.

Sequence in context: A055881 A204917 A232098 * A195155 A178544 A161506

Adjacent sequences:  A055871 A055872 A055873 * A055875 A055876 A055877

KEYWORD

easy,nonn

AUTHOR

Leroy Quet, Jul 16 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 19 02:45 EDT 2019. Contains 323377 sequences. (Running on oeis4.)