The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A176479 a(n) = (n+1)*A001003(n). 4
 1, 2, 9, 44, 225, 1182, 6321, 34232, 187137, 1030490, 5707449, 31760676, 177435297, 994551222, 5590402785, 31500824304, 177880832001, 1006362234162, 5703029112297, 32367243171740, 183945502869345, 1046646207221582, 5961966567317649, 33995080211156904 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Central coefficients T(2n,n) of the Riordan array ((1-x)/(1-2x), x(1-x)/(1-2x)), A105306. a(n) counts the bi-degree sequences of directed trees (i.e., digraphs whose underlying graph is a tree) with n edges. - Nikos Apostolakis, Dec 31 2016 a(n) is also the number of Dyck paths having exactly n peaks in level 1 and n peaks in level 2 and no other peaks. a(2) = 9: /\/\//\/\\, /\//\/\\/\, //\/\\/\/\, /\/\//\\//\\, /\//\\/\//\\, /\//\\//\\/\, //\\/\/\//\\, //\\/\//\\/\, //\\//\\/\/\. - Alois P. Heinz, Jun 20 2017 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..1000 Sergi Elizalde, Rigoberto Flórez, and José Luis Ramírez, Enumerating symmetric peaks in non-decreasing Dyck paths, Ars Mathematica Contemporanea (2021). Milan Janjić, On Restricted Ternary Words and Insets, arXiv:1905.04465 [math.CO], 2019. V. V. Kruchinin and D. V. Kruchinin, A Method for Obtaining Generating Function for Central Coefficients of Triangles, arXiv preprint arXiv:1206.0877 [math.CO], 2012, and J. Int. Seq. 15 (2012) #12.9.3 FORMULA E.g.f.: 1+exp(3*x)*Bessel_I(1,2*sqrt(2)*x)/sqrt(2) +int(exp(3*x) *Bessel_I(1,2*sqrt(2)*x) /(sqrt(2)*x),x). G.f.: 1/4 - (x-3)/(4*sqrt(x^2-6*x+1)). - Dmitry Kruchinin, Aug 31 2012 Conjecture: n*(n-1)*a(n) -3*(2*n-1)*(n-1)*a(n-1) +n*(n-2)*a(n-2) = 0. - R. J. Mathar, Dec 03 2014 a(n) = Sum_{k=0..n} binomial(n-1,n-k) * binomial(n+k,n). - Nikos Apostolakis, Dec 31 2016 a(n) = (n+1)*hypergeom([1-n, -n], [2], 2). - Peter Luschny, Jan 02 2017 MAPLE a:= proc(n) option remember; `if`(n<2, n+1, (6*n-3)/n*a(n-1) -(n-2)/(n-1)*a(n-2)) end: seq(a(n), n=0..25); # Alois P. Heinz, Jun 22 2017 MATHEMATICA a[n_] := Sum[Binomial[n - 1, k - 1]*Binomial[n + k, n], {k, 0, n}]; Array[a, 25, 0] (* or *) CoefficientList[ Series[1/4 - (x - 3)/(4 Sqrt[x^2 - 6x +1]), {x, 0, 25}], x] (* Robert G. Wilson v, Dec 31 2016 *) Table[(n+1)Hypergeometric2F1[1-n, -n, 2, 2], {n, 0, 21}] (* Peter Luschny, Jan 02 2017 *) CROSSREFS Cf. A001003, A105306. Row n=2 of A288972. Sequence in context: A013981 A216861 A199308 * A162356 A339440 A026302 Adjacent sequences: A176476 A176477 A176478 * A176480 A176481 A176482 KEYWORD easy,nonn AUTHOR Paul Barry, Apr 18 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 5 18:26 EST 2023. Contains 360087 sequences. (Running on oeis4.)