login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A052919 a(n) = 1 + 2*3^(n-1) with a(0)=2. 9
2, 3, 7, 19, 55, 163, 487, 1459, 4375, 13123, 39367, 118099, 354295, 1062883, 3188647, 9565939, 28697815, 86093443, 258280327, 774840979, 2324522935, 6973568803, 20920706407, 62762119219, 188286357655, 564859072963 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

It appears that if s(n) is a first order rational sequence of the form s(1)=3, s(n) = (2*s(n-1)+1)/(s(n-1)+2), n > 1, then s(n) = a(n)/(a(n)-2).

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 902

Index entries for linear recurrences with constant coefficients, signature (4,-3).

FORMULA

a(n) = 1 + 2*3^(n-1) for n > 0 with a(0) = 2.

G.f.: (2 - 5*x + x^2)/((1-x)*(1-3*x)).

a(n) = 4*a(n-1) - 3*a(n-2), with a(0)=2, a(1)=3, a(2)=7.

a(0) = 2 and a(n) = A100702(n) for n >= 1. - Omar E. Pol, Mar 02 2012

a(n) = A104743(n) - A104743(n-1). - J. M. Bergot, Jun 07 2013

MAPLE

spec := [S, {S=Union(Sequence(Prod(Sequence(Z), Union(Z, Z))), Sequence(Z))}, unlabeled]: seq(combstruct[count](spec, size=n), n=0..20);

seq(`if`(n=0, 2, 1 + 2*3^(n-1)), n=0..30); # G. C. Greubel, Oct 16 2019

MATHEMATICA

Join[{2}, Table[2*(3^n+1)-1, {n, 0, 30}]] (* Vladimir Joseph Stephan Orlovsky, Feb 14 2011*)

CoefficientList[Series[(2-5*x+x^2)/((1-x)*(1-3*x)), {x, 0, 40}], x] (* Vincenzo Librandi, Jun 22 2012 *)

LinearRecurrence[{4, -3}, {2, 3, 7}, 30] (* Harvey P. Dale, Dec 12 2017 *)

PROG

(MAGMA) I:=[2, 3, 7]; [n le 3 select I[n] else 4*Self(n-1)-3*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Jun 22 2012

(PARI) vector(31, n, if(n==1, 2, 1+ 2*3^(n-2))) \\ G. C. Greubel, Oct 16 2019

(Sage) [2]+[1+2*3^(n-1) for n in (1..30)] # G. C. Greubel, Oct 16 2019

(GAP) Concatenation([2], List([1..30], n-> 1 + 2*3^(n-1) )); # G. C. Greubel, Oct 16 2019

CROSSREFS

Sequence in context: A256758 A033844 A037028 * A005807 A167422 A060276

Adjacent sequences:  A052916 A052917 A052918 * A052920 A052921 A052922

KEYWORD

easy,nonn

AUTHOR

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

EXTENSIONS

More terms from James A. Sellers, Jun 05 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 27 06:03 EST 2020. Contains 332299 sequences. (Running on oeis4.)