This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A049401 Number of Young tableaux of height <= 5. 14
 1, 1, 2, 4, 10, 26, 75, 225, 715, 2347, 7990, 27908, 99991, 365587, 1362310, 5159208, 19831101, 77233517, 304423574, 1212962072, 4881181036, 19821471956, 81165639197, 334925706659, 1391935877463, 5823186349671, 24511802558326, 103772782048252, 441696903185704 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Also the number of n-length words w over alphabet {a,b,c,d,e} such that for every prefix z of w we have #(z,a) >= #(z,b) >= #(z,c) >= #(z,d) >= #(z,e), where #(z,x) counts the letters x in word z.  The a(5) = 26 words are: aaaaa, aaaab, aaaba, aabaa, abaaa, aaabb, aabab, abaab, aabba, ababa, aaabc, aabac, abaac, aabca, abaca, abcaa, aabbc, ababc, aabcb, abacb, abcab, aabcd, abacd, abcad, abcda, abcde. - Alois P. Heinz, May 30 2012 REFERENCES R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 7.16(b), y_5(n), p. 452. LINKS Alois P. Heinz, Table of n, a(n) for n = 0..1000 F. Bergeron, L. Favreau and D. Krob, Conjectures on the enumeration of tableaux of bounded height, Discrete Math, vol. 139, no. 1-3 (1995), 463-468. F. Bergeron and F. Gascon, Counting Young tableaux of bounded height, J. Integer Sequences, Vol. 3 (2000), #00.1.7. Juan B. Gil, Peter R. W. McNamara, Jordan O. Tirrell, Michael D. Weiner, From Dyck paths to standard Young tableaux, arXiv:1708.00513 [math.CO], 2017. Alon Regev, Amitai Regev, Doron Zeilberger, Identities in character tables of S_n, arXiv preprint arXiv:1507.03499 [math.CO], 2015. FORMULA E.g.f.: e^x*(BesselI(0, 2*x)^2 - BesselI(0, 2*x)*BesselI(2, 2*x) - BesselI(0, 2*x)*BesselI(4, 2*x) - BesselI(1, 2*x)^2 + 2*BesselI(1, 2*x)*BesselI(3, 2*x) + BesselI(2, 2*x)*BesselI(4, 2*x) - BesselI(3, 2*x)^2) (BesselI = modified Bessel function of first kind). a(n) ~ 3*5^(n+5)/(8*Pi*n^5). - Vaclav Kotesovec, Aug 18 2013 MAPLE a:= proc(n) option remember;       `if`(n<3, [1, 1, 2][n+1], ((3*n^2+17*n+15)*a(n-1)        +(n-1)*(13*n+9)*a(n-2) -15*(n-1)*(n-2)*a(n-3)) /        ((n+4)*(n+6)))     end: seq(a(n), n=0..30);  # Alois P. Heinz, Oct 12 2012 MATHEMATICA a[n_] := a[n] = If[n<3, {1, 1, 2}[[n+1]], ((3*n^2+17*n+15)*a[n-1] + (n-1)*(13*n+9)*a[n-2] - 15*(n-1)*(n-2)*a[n-3]) / ((n+4)*(n+6))]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 10 2014, after Alois P. Heinz *) CROSSREFS Sum of first five diagonals of A047884. Cf. A007579. Column k=5 of A182172. - Alois P. Heinz, May 30 2012 Sequence in context: A089404 A006123 A006251 * A294672 A239077 A148099 Adjacent sequences:  A049398 A049399 A049400 * A049402 A049403 A049404 KEYWORD nonn,easy AUTHOR EXTENSIONS More terms from Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Jun 17 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 16 04:02 EDT 2018. Contains 316259 sequences. (Running on oeis4.)