login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A052549 a(n) = 5*2^(n-1) - 1, n>0, with a(0)=1. 8
1, 4, 9, 19, 39, 79, 159, 319, 639, 1279, 2559, 5119, 10239, 20479, 40959, 81919, 163839, 327679, 655359, 1310719, 2621439, 5242879, 10485759, 20971519, 41943039, 83886079, 167772159, 335544319, 671088639, 1342177279, 2684354559 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

A153894 is a better version of this sequence. - N. J. A. Sloane, Feb 07 2009

Equals binomial transform of [1, 3, 2, 3, 2, 3, 2,...] and row sums of triangle A140183. - Gary W. Adamson, May 11 2008

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

David Eppstein, Making Change in 2048, arXiv:1804.07396 [cs.DM], 2018.

INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 486

Index entries for linear recurrences with constant coefficients, signature (3,-2).

FORMULA

G.f.: (1 + x - x^2)/((1-2*x)*(1-x)).

a(n) = 2*a(n-1) + 1, for n>1, with a(0)=1 and a(1)=4.

Equals row sums of triangle A133601. - Gary W. Adamson, Sep 18 2007

E.g.f.: (5*exp(2*x) - 2*exp(x) -1)/2. - G. C. Greubel, May 07 2019

MAPLE

spec := [S, {S=Prod(Sequence(Union(Z, Z)), Union(Z, Sequence(Z)))}, unlabeled]: seq(combstruct[count](spec, size=n), n=0..20);

MATHEMATICA

{1}~Join~Array[5*2^(# -1)-1 &, 30] (* Michael De Vlieger, Jul 18 2018 *)

LinearRecurrence[{3, -2}, {1, 4, 9}, 30] (* G. C. Greubel, May 07 2019 *)

PROG

(PARI) vector(30, n, n--; if(n==0, 1, 5*2^(n-1) -1)) \\ G. C. Greubel, May 07 2019

(MAGMA) [n eq 0 select 1 else 5*2^(n-1) -1: n in [0..30]]; // G. C. Greubel, May 07 2019

(Sage) [1]+[5*2^(n-1) -1 for n in (1..30)] # G. C. Greubel, May 07 2019

(GAP) Concatenation([1], List([1..30], n-> 5*2^(n-1) -1)) # G. C. Greubel, May 07 2019

CROSSREFS

Cf. A133601, A140183, A153894.

Sequence in context: A101353 A008135 A009885 * A153894 A301137 A214318

Adjacent sequences:  A052546 A052547 A052548 * A052550 A052551 A052552

KEYWORD

easy,nonn

AUTHOR

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

EXTENSIONS

More terms from James A. Sellers, Jun 06 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 16 18:45 EDT 2019. Contains 327117 sequences. (Running on oeis4.)