This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A029744 Numbers of the form 2^n or 3*2^n. 73
 1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256, 384, 512, 768, 1024, 1536, 2048, 3072, 4096, 6144, 8192, 12288, 16384, 24576, 32768, 49152, 65536, 98304, 131072, 196608, 262144, 393216, 524288, 786432, 1048576, 1572864, 2097152, 3145728, 4194304 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS WARNING: Several comments, formulas and programs seem to refer to the original version with offset = 0. - M. F. Hasler, Oct 06 2014 Number of necklaces with n-1 beads and two colors that are the same when turned over and hence have reflection symmetry. [edited by Herbert Kociemba, Nov 24 2016] The subset {a(1),...,a(2k)} contains all proper divisors of 3*2^k. - Ralf Stephan, Jun 02 2003 Let k = any nonnegative integer and j = 0 or 1. Then n+1 = 2k + 3j and a(n) = 2^k*3^j. - Andras Erszegi (erszegi.andras(AT)chello.hu), Jul 30 2005 Smallest number having no fewer prime factors than any predecessor, a(0)=1; A110654(n) = A001222(a(n)); complement of A116451. - Reinhard Zumkeller, Feb 16 2006 A093873(a(n)) = 1. - Reinhard Zumkeller, Oct 13 2006 a(n) = a(n-1) + a(n-2) - gcd(a(n-1), a(n-2)), n >= 3, a(1)=2, a(2)=3. - Ctibor O. Zizka, Jun 06 2009 Where records occur in A048985: A193652(n) = A048985(a(n)) and A193652(n) < A048985(m) for m < a(n). - Reinhard Zumkeller, Aug 08 2011 A002348(a(n)) = A000079(n-3) for n > 2. - Reinhard Zumkeller, Mar 18 2012 Without initial 1, third row in array A228405. - Richard R. Forberg, Sep 06 2013 Numbers x such that Sum_{i=1..k} (1/(p_i - 1)) + Product_{i=1..k} (1/(p_i - 1)) is an integer, where p_i are the k prime factors of x (with multiplicity). In particular this sum is equal to n+1, being n the exponent of 2. - Paolo P. Lava, Feb 24 2014 Also positions of records in A048673. A246360 gives the record values. - Antti Karttunen, Sep 23 2014 Known in numerical mathematics as "Bulirsch sequence", used in various extrapolation methods for step size control. - Peter Luschny, Oct 30 2019 LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..2000 David Eppstein, Making Change in 2048, arXiv:1804.07396 [cs.DM], 2018. Guo-Niu Han, Enumeration of Standard Puzzles. [Cached copy] John P. McSorley and Alan H. Schoen, Rhombic tilings of (n,k)-ovals, (n, k, lambda)-cyclic difference sets, and related topics, Discrete Math., 313 (2013), 129-154. - From N. J. A. Sloane, Nov 26 2012 Index entries for linear recurrences with constant coefficients, signature (0,2). FORMULA a(n) = 2*A000029(n) - A000031(n). For n > 2, a(n) = 2*a(n - 2); for n > 3, a(n) = a(n - 1)*a(n - 2)/a(n - 3). G.f.: (1 + x)^2/(1 - 2*x^2). - Henry Bottomley, Jul 15 2001, corrected May 04 2007 a(0)=1, a(1)=1 and a(n) = a(n-2) * ( floor(a(n-1)/a(n-2)) + 1 ). - Benoit Cloitre, Aug 13 2002 (3/4 + sqrt(1/2))*sqrt(2)^n + (3/4 - sqrt(1/2))*(-sqrt(2))^n. a(0)=1, a(2n) = a(n-1)*a(n), a(2n+1) = a(n) + 2^floor((n-1)/2). - Ralf Stephan, Apr 16 2003 [Seems to refer to the original version with offset=0. - M. F. Hasler, Oct 06 2014] Binomial transform is A048739. - Paul Barry, Apr 23 2004 E.g.f.: (cosh(x/sqrt(2)) + sqrt(2)sinh(x/sqrt(2)))^2. a(1) = 1; a(n+1) = a(n) + A000010(a(n)). - Stefan Steinerberger, Dec 20 2007 u(2)=1, v(2)=1, u(n)=2*v(n-1), v(n)=u(n-1), a(n)=u(n)+v(n). - Jaume Oliver Lafont, May 21 2008 For n => 3, a(n) = sqrt(2*a(n-1)^2 + (-2)^(n-3)). - Richard R. Forberg, Aug 20 2013 a(n) = A064216(A246360(n)). - Antti Karttunen, Sep 23 2014 a(n) = sqrt((17 - (-1)^n)*2^(n-4)) for n >= 2. - Anton Zakharov, Jul 24 2016 MAPLE with(numtheory); P:=proc(q) local a, b, c, i, n; for n from 1 to q do a:=ifactors(n)[2]; b:=add(a[i, 2]/(a[i, 1]-1), i=1..nops(a)); c:=mul((1/(a[i, 1]-1))^a[i, 2], i=1..nops(a)); if type(b+c, integer) then print(n); fi; od; end: P(10^6); # Paolo P. Lava, Feb 24 2014 # Alternative: 1, seq(op([2^i, 3*2^(i-1)]), i=1..100); # Robert Israel, Sep 23 2014 MATHEMATICA CoefficientList[Series[(-x^2 - 2*x - 1)/(2*x^2 - 1), {x, 0, 200}], x] (* Vladimir Joseph Stephan Orlovsky, Jun 10 2011 *) Function[w, DeleteCases[Union@ Flatten@ w, k_ /; k > Max@ First@ w]]@ TensorProduct[{1, 3}, 2^Range[0, 22]] (* Michael De Vlieger, Nov 24 2016 *) LinearRecurrence[{0, 2}, {1, 2, 3}, 50] (* Harvey P. Dale, Jul 04 2017 *) PROG (PARI) a(n)=2^(n\2)*if(n%2, 2, 3/2) \\ Refers to the original version with offset=0. - M. F. Hasler, Oct 06 2014 (Haskell) a029744 n = a029744_list !! (n-1) a029744_list = 1 : iterate    (\x -> if x `mod` 3 == 0 then 4 * x `div` 3 else 3 * x `div` 2) 2 -- Reinhard Zumkeller, Mar 18 2012 (Scheme) (define (A029744 n) (cond ((<= n 1) n) ((even? n) (expt 2 (/ n 2))) (else (* 3 (expt 2 (/ (- n 3) 2)))))) ;; Antti Karttunen, Sep 23 2014 CROSSREFS Cf. A056493, A038754, A063759. Union of A000079 and A007283. First differences are in A016116(n-1). Cf. A082125, A094958, A048739, A048985, A193652, A048673, A064216, A246360. Row sums of the triangle in sequence A119963. - John P. McSorley, Aug 31 2010 Sequence in context: A052810 A320315 A164090 * A018635 A018425 A018328 Adjacent sequences:  A029741 A029742 A029743 * A029745 A029746 A029747 KEYWORD nonn,easy AUTHOR EXTENSIONS Corrected and extended by Joe Keane (jgk(AT)jgk.org), Feb 20 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 8 08:49 EST 2019. Contains 329862 sequences. (Running on oeis4.)