This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A070402 a(n) = 2^n mod 5. 6
 1, 2, 4, 3, 1, 2, 4, 3, 1, 2, 4, 3, 1, 2, 4, 3, 1, 2, 4, 3, 1, 2, 4, 3, 1, 2, 4, 3, 1, 2, 4, 3, 1, 2, 4, 3, 1, 2, 4, 3, 1, 2, 4, 3, 1, 2, 4, 3, 1, 2, 4, 3, 1, 2, 4, 3, 1, 2, 4, 3, 1, 2, 4, 3, 1, 2, 4, 3, 1, 2, 4, 3, 1, 2, 4, 3, 1, 2, 4, 3, 1, 2, 4, 3, 1, 2, 4, 3, 1, 2, 4, 3, 1, 2, 4, 3, 1, 2, 4, 3, 1, 2, 4, 3, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Periodic with period 4: [1, 2, 4, 3]. - Washington Bomfim, Nov 23 2010 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (1,-1,1). FORMULA From Paolo P. Lava, Feb 24 2010: (Start) a(n) = (1/12)*(11*(n mod 4) + 8*((n+1) mod 4)-((n+2) mod 4) + 2*((n+3) mod 4)). a(n) = (5/2) - (1/4)*((3-i)*i^n-(3+i)*(-i)^n), with i=sqrt(-1). (End) From R. J. Mathar, Apr 13 2010: (Start) a(n) = a(n-1) - a(n-2) + a(n-3). G.f.: (1 + x + 3*x^2) / ((1-x)*(1+x^2)). (End) From Washington Bomfim, Nov 23 2010: (Start) a(n) = 1 + (15*r^2 - 5*r - 4*r^3)/6, where r = n mod 4. a(n) = A000689(n) - 5*floor(((n-1) mod 4)/2) for n>0. (End) E.g.f.: (1/2)*(5*exp(x) - 3*cos(x) - sin(x)). - G. C. Greubel, Mar 19 2016 MAPLE A070402 := proc(n) op((n mod 4)+1, [1, 2, 4, 3]) ; end proc: # R. J. Mathar, Feb 05 2011 MATHEMATICA PadRight[{}, 100, {1, 2, 4, 3}] (* or *) CoefficientList[Series[(1 + 2 x + 4 x^2 + 3 x^3) / (1 - x^4), {x, 0, 100}], x] (* Vincenzo Librandi, Mar 25 2016 *) PROG (Sage) [power_mod(2, n, 5) for n in xrange(0, 105)] # Zerinvary Lajos, Jun 08 2009 (PARI) for(n=0, 80, x=n%4; print1(1 + (15*x^2 -5*x -4*x^3)/6, ", ")) \\ Washington Bomfim, Nov 23 2010 (MAGMA) [Modexp(2, n, 5): n in [0..100]]; // Bruno Berselli, Mar 23 2016 (GAP) List([0..83], n->PowerMod(2, n, 5)); # Muniru A Asiru, Feb 01 2019 CROSSREFS Cf. A173635. Sequence in context: A229802 A106581 A317612 * A125941 A275117 A243141 Adjacent sequences:  A070399 A070400 A070401 * A070403 A070404 A070405 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, May 12 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 18 11:15 EDT 2019. Contains 321283 sequences. (Running on oeis4.)