login
This site is supported by donations to The OEIS Foundation.

 

Logo

The OEIS is looking to hire part-time people to help edit core sequences, upload scanned documents, process citations, fix broken links, etc. - Neil Sloane, njasloane@gmail.com

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A060941 Duchon's numbers: the number of paths of length 5*n from the origin to the line y = 2*x/3 with unit East and North steps that stay below the line or touch it. 5
1, 2, 23, 377, 7229, 151491, 3361598, 77635093, 1846620581, 44930294909, 1113015378438, 27976770344941, 711771461238122, 18293652115906958, 474274581883631615, 12388371266483017545, 325714829431573496525, 8613086428709348334675, 228925936056388155632081 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

A generalization of the ballot numbers.

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..500

C. Banderier, Home page

Cyril Banderier, Philippe Flajolet, Basic Analytic Combinatorics of Lattice Paths, Theoret. Comput. Sci. 281 (2002), 37-80.

D Bevan, D Levin, P Nugent, J Pantone, L Pudwell, Pattern avoidance in forests of binary shrubs, arXiv preprint arXiv:1510:08036, 2015

Daniel Birmajer, Juan B. Gil, Peter R. W. McNamara, Michael D. Weiner, Enumeration of colored Dyck paths via partial Bell polynomials, arXiv:1602.03550 [math.CO], 2016.

M. T. L. Bizley, Derivation of a new formula..., Journal of the Institute of Actuaries 80 (1954), 55-62 (especially p59).

M. Bousquet-Mélou and A. Jehanne, Polynomial equations with one catalytic variable, algebraic series and map enumeration, arXiv:math/0504018 [math.CO], 2005.

P. Duchon, Home Page

Philippe Duchon, On the enumeration and generation of generalized Dyck words, Discrete Mathematics 225, 2000, 121-135.

P. Flajolet, Home page

Don Knuth, 20th Anniversary Christmas Tree Lecture [A060941 is mentioned after about 65 minutes - N. J. A. Sloane, Dec 09 2014]

FORMULA

a(n) = sum(i=0..n, 1/(5*n+i+1) * C(5*n+1, n-i) * C(5*n+2*i, i) ).

a(n) = sum(i=0..2*n, (-1)^i/(5*i+1) * C((5*i+1)/2, i) * 1/(1+5*(2*n-i)) * C((1+5*(2*n-i))/2, 2*n-i) ).

G.f. A(z) satisfies A(z) = 1+2*z^5*A^5-z^5*A^6+z^5*A^7+z^10*A^10.

G.f.: A(z) = exp(C(5,2)*z/5 + C(10,4)*z^2/10 + C(15,6)*z^3/15 + ...). - Don Knuth, Oct 05 2014

Recurrence: 216*(n-1)*n*(2*n-1)*(3*n-4)*(3*n-2)*(3*n-1)*(3*n+1)*(6*n-1)*(6*n+1)*(5625*n^4 - 38550*n^3 + 97425*n^2 - 107784*n + 44044)*a(n) = 540*(n-1)*(3*n-4)*(3*n-2)*(126562500*n^10 - 1373625000*n^9 + 6557484375*n^8 - 18192221250*n^7 + 32549973750*n^6 - 39248008800*n^5 + 32203028675*n^4 - 17641491134*n^3 + 6113558828*n^2 - 1191132600*n + 96112128)*a(n-1) - 450*(5*n-9)*(5*n-8)*(5*n-7)*(5*n-6)*(63281250*n^9 - 718453125*n^8 + 3556125000*n^7 - 10046426250*n^6 + 17765816250*n^5 - 20240090325*n^4 + 14698993900*n^3 - 6468702396*n^2 + 1533535184*n - 142988160)*a(n-2) + 78125*(n-2)*(5*n-14)*(5*n-13)*(5*n-12)*(5*n-11)*(5*n-9)*(5*n-8)*(5*n-7)*(5*n-6)*(5625*n^4 - 16050*n^3 + 15525*n^2 - 6084*n + 760)*a(n-3). - Vaclav Kotesovec, Oct 05 2014

Asymptotics (Duchon, 2000): a(n) ~ c * (3125/108)^n / n^(3/2), where c = 0.0876612192439026461763141944768209255550234422281635788... (constant corrected, in the reference "On the enumeration and generation of generalized Dyck words", p.132 is wrong value 0.0887). - Vaclav Kotesovec, Oct 05 2014

a(n) = Gamma(n+4/5)*Gamma(n+3/5)*Gamma(n+2/5)*3125^n*hypergeom([-n, (5/2)*n+1, (5/2)*n+1/2], [5*n+2, 4*n+2], -4)*Gamma(n+1/5)/ (Pi^2*csc((2/5)*Pi)*csc((1/5)*Pi)*Gamma(4*n+2)). - Robert Israel, Oct 05 2014

a(n) = A002294(n)*hypergeom([-n,5*n/2+1/2,5*n/2+1],[4*n+2,5*n+2],-4). - Peter Luschny, Oct 05 2014

O.g.f. A(x) satisfies A(x)^5 = 1/x*series reversion( x/((1+x)*C(x))^5 ), where C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. for the Catalan numbers A000108. See A001450. - Peter Bala, Oct 05 2015

MAPLE

A060941 := n -> hypergeom([-n, 5*n/2+1/2, 5*n/2+1], [4*n+2, 5*n+2], -4)* binomial(5*n, n)/(4*n+1); seq(simplify(A060941(n)), n=0..18); # Peter Luschny, Oct 05 2014

MATHEMATICA

a[n_] = ((5n)!*(5n + 1)!*HypergeometricPFQRegularized[{-n, 5n/2 + 1/2, 5n/2 + 1}, {4n + 2, 5n + 2}, -4])/n!; a /@ Range[0, 16]

(* Jean-François Alcover, Jun 30 2011, after given formula *)

PROG

(Sage)

A060941 = lambda n : hypergeometric([-n, 5*n/2+1/2, 5*n/2+1], [4*n+2, 5*n+2], -4)*gamma(1+5*n)/(gamma(1+n)*gamma(2+4*n))

[A060941(n).simplify() for n in range(19)] # Peter Luschny, Oct 05 2014

(MAGMA) [&+[1/(5*n+i+1)*Binomial(5*n+1, n-i)*Binomial(5*n+2*i, i): i in [0..n]]: n in [0..30]]; // Vincenzo Librandi, Feb 12 2016

CROSSREFS

Cf. A000108, A001450, A002294.

Sequence in context: A234868 A239109 A266923 * A219890 A119774 A074649

Adjacent sequences:  A060938 A060939 A060940 * A060942 A060943 A060944

KEYWORD

nice,nonn

AUTHOR

Philippe Flajolet, May 12 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 27 13:22 EDT 2017. Contains 287205 sequences.