This site is supported by donations to The OEIS Foundation.

CiteN

From OeisWiki
Jump to: navigation, search


"How to learn if there is a certain regularity in the sequence? The best way is to go to the Online Encyclopedia of Integer Sequences (https://oeis.org/) initiated by Neil James Alexander Sloane, and ask if it contains our sequence." [Tibor Nagy et al., 2 019]

About this page

  • This is part of the series of OEIS Wiki pages that list works citing the OEIS.
  • Additions to these pages are welcomed.
  • But if you add anything to these pages, please be very careful — remember that this is a scientific database. Spell authors' names, titles of papers, journal names, volume and page numbers, etc., carefully, and preserve the alphabetical ordering.
  • If you are unclear about what to do, contact one of the Editors-in-Chief before proceeding.
  • Works are arranged in alphabetical order by author's last name.
  • Works with the same set of authors are arranged by date, starting with the oldest.
  • This section lists works in which the first author's name begins with N.
  • The full list of sections is: A Ba Bi Ca Ci D E F G H I J K L M N O P Q R Sa Sl T U V W X Y Z.
  • For further information, see the main page for Works Citing OEIS.

References

  1. D. Nacin, The Minimal Non-Koszul A(Gamma), arXiv:1204.1534, 2012.
  2. David Nacin, "Puzzles, Parity Maps, and Plenty of Solutions", Chapter 15, The Mathematics of Various Entertaining Subjects: Volume 3 (2019), Jennifer Beineke & Jason Rosenhouse, eds. Princeton University Press, Princeton and Oxford, p. 245. (A001423, A002860)
  3. Yogesh Nagar, R. B. Singh, Sequences and Series, International Journal of Research in Engineering, Science and Management (2019) Vol. 2, No. 7, 427-430. PDF (A000045)
  4. Rohit Nagpal, A Snowden, The module theory of divided power algebras, arXiv preprint arXiv:1606.03431, 2016
  5. Mariana Nagy, Simon R. Cowell, and Valeriu Beiu, Are 3D Fibonacci spirals for real?: From science to arts and back to science. 2018 7th International Conference on Computers Communications and Control (ICCCC). IEEE, 2018. doi:10.1109/ICCCC.2018.8390443 (A000045, A000931)
  6. Mariana Nagy, Simon R. Cowell, Valeriu Beiu, Survey of Cubic Fibonacci Identities - When Cuboids Carry Weight, arXiv:1902.05944 [math.HO], 2019. (A000032, A000045, A000129, A000931, A056570)
  7. G. Nagy, Invariant representation for rectilinear rulings, Journal of Electronic Imaging 23(6), 063011 (Nov∕Dec 2014); PDF
  8. Tibor Nagy, János Tóth, Tamás Ladics, Automatic model generation, arXiv:1904.01272 [math.NA], 2019. How to learn if there is a certain regularity in the sequence? The best way is to go to the Online Encyclopedia of Integer Sequences (https://oeis.org/) initiated by Neil James Alexander Sloane, and ask if it contains our sequence.
  9. Tibor Nagy, János Tóth, Tamás Ladics, Automatic kinetic model generation and selection based on concentration versus time curves, Int J Chem Kinet. (2020) Vol. 52, 109–123. doi:10.1002/kin.21335
  10. Daniel Q. Naiman, Edward R. Scheinerman, Arbitrage and Geometry, arXiv:1709.07446 [q-fin.MF], 2017 (A014206)
  11. Ramin Naimi, Eric Sundberg, A Combinatorial Problem Solved by a Meta-Fibonacci Recurrence Relation, arXiv:1902.02929 [math.CO], 2019. (A046699)
  12. Yu Nakahata, Jun Kawahara, Takashi Horiyama, Shin-ichi Minato, Implicit Enumeration of Topological-Minor-Embeddings and Its Application to Planar Subgraph Enumeration, arXiv:1911.07465 [cs.DS], 2019. (A066537)
  13. B. K. Nakamura, Computational methods in permutation patterns, PhD Dissertation, Rutgers University, May 2013.
  14. Brian Nakamura, Elizabeth Yang, Competition graphs induced by permutations, arXiv preprint arXiv:1503.05617, 2015
  15. B. Nakamura and D. Zeilberger, Using Noonan-Zeilberger Functional Equations to enumerate (in Polynomial Time!) Generalized Wilf classes, arXiv:1209.2353, 2012 and Adv. Appl. Math. 50 (3) (2013) 356-366 doi:10.1016/j.aam.2012.10.003
  16. Nagatomo Nakamura, Pseudo-Normal Random Number Generation via the Eulerian Numbers</a>, Josai Mathematical Monographs, vol 8, p 85-95, 2015. PDF
  17. F. Nakano, T. Sadahiro, A generalization of carries process and Eulerian numbers, arXiv preprint arXiv:1306.2790, 2013
  18. K. Nakano, Shall We Juggle, Coinductively?, in Certified Programs and Proofs, Lecture Notes in Computer Science Volume 7679, 2012, pp 160-172, doi:10.1007/978-3-642-35308-6_14
  19. Norihiro Nakashima, Shuhei Tsujie, Enumeration of Flats of the Extended Catalan and Shi Arrangements with Species, arXiv:1904.09748 [math.CO], 2019. (A000012, A000110, A000142, A000262, A000670, A002866, A008277, A025168, A034001, A034177, A034325, A050351, A050352, A050353, A075729, A079621, A088729, A105278, A109092, A321837, A321847, A321848)
  20. S. Narayanan, Improving the Speed and Accuracy of the Miller-Rabin Primality Test 2015; http://math.mit.edu/research/highschool/primes/materials/2014/Narayanan.pdf
  21. Lila Naranjani and Madjid Mirzavaziri, Full Subsets of N, Journal of Integer Sequences, Vol. 14 (2011), #11.5.3.
  22. Shyam Narayanan, Improving the Accuracy of Primality Tests by Enhancing the Miller-Rabin Theorem, 2014; http://web.mit.edu/primes/materials/2014/conf/5-1-Narayanan.pdf
  23. Sridhar Narayanan, The Representation Theory of 2-Sylow Subgroups of the Symmetric Group, arXiv:1712.02507 [math.RT], 2017. (A006893)
  24. Veena Narayanan, S. V. Audhithya, Rangu Srikanth, Engineering Applications of Number Theory, International Journal of Mechanical Engineering and Technology (IJMET, 2019) Vol. 10, Issue 1, 69-73. Abstract
  25. Michele Nardelli, Antonio Nardelli, On the Ramanujan's Mock theta functions of tenth order: new possible mathematical developments and mathematical connections with some sectors of Particle Physics and Black Hole physics II, Università degli Studi di Napoli (Italy, 2019). PDF (A053282)
  26. Robert Nasdala, Identities and Oddities, https://www-user.tu-chemnitz.de/~mnas/Documents/winter%20seminar/PhD_seminar_Dec.pdf
  27. P Nataf, M Lajkó, A Wietek, K Penc, F Mila, AM Läuchli, Chiral spin liquids in triangular lattice SU (N) fermionic Mott insulators with artificial gauge fields, - arXiv preprint arXiv:1601.00958, 2016
  28. Pierpaolo Natalini, Paolo Emilio Ricci, Higher order Bell polynomials and the relevant integer sequences, in Appl. Anal. Discrete Math. 11 (2017), 327–339. doi:10.2298/AADM1702327N See also PDF (A144150)
  29. Pierpaolo Natalini, Paolo E. Ricci, Integer Sequences Connected with Extensions of the Bell Polynomials, Journal of Integer Sequences, 2017, Vol. 20, #17.10.2.
  30. Pierpaolo Natalini, Paolo Emilio Ricci, New Bell–Sheffer Polynomial Sets, Axioms 2018, 7(4), 71. doi:10.3390/axioms7040071 (A000110, A164864, A164863, A276723, A276724, A276725, A276726, A287278, A287279, A287280)
  31. Pierpaolo Natalini, Paolo E. Ricci, Adjoint Appell-Euler and First Kind Appell-Bernoulli Polynomials, Applications and Applied Mathematics (2019) Vol. 14, Issue 2, 1112–1122. PDF
  32. Melvyn B. Nathanson, Primitive sets and an Euler phi function for subsets of {1,2,...,n} (2006), arXiv:math/0608150.
  33. M. B. Nathanson, Growth polynomials for additive quadruples and (h, k)-tuples, arXiv preprint arXiv:1305.7172, 2013
  34. M. B. Nathanson, K. O'Bryant, A problem of Rankin on sets without geometric progressions, arXiv preprint arXiv:1408.2880, 2014
  35. Lexter R. Natividad, Notes on Jacobsthal and Jacobsthal-like Sequences, International Journal of Mathematics Trends and Technology (IJMTT), Volume 34 Number 2, 2016, p. 115-117. doi:10.14445/22315373/IJMTT-V34P519
  36. L. Naughton and G. Pfeiffer, Integer Sequences Realized by the Subgroup Pattern of the Symmetric Group, arXiv:1211.1911, 2012 and J. Int. Seq. 16 (2013) #13.5.8.
  37. Enrique Navarrete, Forbidden Substrings In Circular K-Successions, arXiv:1702.02637 [math.CO], 2017.
  38. Enrique Navarrete, Daniel Orellana, Finding Prime Numbers as Fixed Points of Sequences, arXiv:1907.10023 [math.NT], 2019. (A000217, A002378, A027468, A028896, A046092, A111273, A113659)
  39. Luis M. Navas, Francisco J. Ruiz, Juan L. Varona, A note on Appell sequences, Mellin transforms and Fourier series, Journal of Mathematical Analysis and Applications (2019) Vol. 476 Issue 2, 836-850. doi:10.1016/j.jmaa.2019.04.019
  40. Miguel Navascues, Tamas Vertesi, The limits of Matrix Product State models, arXiv:1509.04507 [quant-ph]
  41. Miguel Navascués, Tamás Vértesi, Bond dimension witnesses and the structure of homogeneous matrix product states, Quantum 2 (2018): 50. PDF (A096338)
  42. S. P. Naveen, On The Asymptotics of Some Counting Problems in Physics, Thesis, Bachelor of Technology, DEPARTMENT OF PHYSICS, INDIAN INSTITUTE OF TECHNOLOGY, MADRAS, May 2011; PDF
  43. Abdel-Hameed Nawar, Debapriya Sen, k-th price auctions and Catalan numbers, arXiv:1808.05996 [econ.TH], 2018. (A000108)
  44. S. Nazardonyavi and S. Yakubovich, Superabundant numbers, their subsequences and the Riemann hypothesis, arXiv:1211.2147, 2012
  45. S. Nazardonyavi and S. Yakubovich, Delicacy of the Riemann hypothesis and certain subsequences of superabundant numbers, arXiv preprint arXiv:1306.3434, 2013
  46. S. Nazardonyavi, S. Yakubovich, Extremely Abundant Numbers and the Riemann Hypothesis, Journal of Integer Sequences, 17 (2014), Article 14.2.8.
  47. Nebe, G., Kneser-Hecke-operators in coding theory. Abh. Math. Sem. Univ. Hamburg 76 (2006), 79-90.
  48. G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
  49. D. Necas, I. Ohlidal, Consolidated series for efficient calculation of the reflection and transmission in rough multilayers, Optics Express, Vol. 22, 2014, No. 4; doi:10.1364/OE.22.004499
  50. Ion Nechita, Some analytical aspects of Hadamard matrices
  51. Z. Nedev, A Reduced Computational Complexity Strategy for the Magnus-Derek Game, International Mathematical Forum, Vol. 9, 2014, no. 7, pp. 325 - 333; doi:10.12988/imf.2014.411
  52. Z. Nedev and S. Muthukrishnan, The Nagger-Mover Game, DIMACS Tech. Report 2005-22.
  53. Z. Nedev, S. Muthukrishnan, The Magnus-Derek game, Theoretical Computer Science, Volume 393, Issues 1-3, 20 March 2008, Pages 124-132.
  54. Patrizio Neff, Andreas Fischle, Lev Borisov, Explicit Global Minimization of the Symmetrized Euclidean Distance by a Characterization of Real Matrices with Symmetric Square, SIAM J. Appl. Algebra Geometry (2019) 3(1), 31–43. doi:10.1137/18M1179663
  55. T. Negadi, The genetic code invariance: when Euler and Fibonacci meet, arXiv preprint arXiv:1406.6092, 2014; Symmetry: Culture and Science, Vol. 25, No. 3, 261-278, 2014
  56. F. Negro, K. Keenan, D. Farina, Power spectrum of the rectified EMG: Influence of motor unit action potential shapes, in: Engineering in Medicine and Biology Society (EMBC), 2014 36th Annual International Conference of the IEEE, 26-30 Aug. 2014; Pages: 2193 - 2196; ISSN : 1557-170X doi:10.1109/EMBC.2014.6944053
  57. Denis Neiter, A Proag, Links Between Sums Over Paths in Bernoulli's Triangles and the Fibonacci Numbers, Journal of Integer Sequences, 2016, Vol. 19, #16.8.3.
  58. Luke L. Nelsen, Computational methods for graph choosability and applications to list coloring problems, Ph.D. Thesis, University of Colorado (2019). PDF (A000110)
  59. Roger B. Nelson, Multi-Polygonal Numbers, Mathematics Magazine, Vol. 89, No. 3 (June 2016), pp. 159-164.
  60. R. B. Nelsen and H. Schmidt, Jr., Chains in power sets, Math. Mag., 64 (1991), 23-31.
  61. Mohammad Nemati, Taiebeh Tamoradi, Hojat Veisi, Immobilization of Gd(III) complex on Fe3O4: A novel and recyclable catalyst for synthesis of tetrazole and S–S coupling, Polyhedron (2019) Volume 167, 75-84. doi:10.1016/j.poly.2019.04.016
  62. Robert M. Nemba and Alphonse Emadak, "Direct Enumeration of Chiral and Achiral Graphs of a Polyheterosubstituted Monocyclic Cycloalkane", J. Integer Sequences, Volume 5, 2002, Article 02.1.6.
  63. Nemecek, Jan; Klazar, Martin, A bijection between nonnegative words and sparse abba-free partitions. Discrete Math. 265 (2003), no. 1-3, 411-416.
  64. G. Nemes, On the coefficients of the asymptotic expansion of n!, J. Integer Seqs. 13 (2010), 5.
  65. Gergo Nemes, On the coefficients of an asymptotic expansion related to Somos' quadratic recurrence constant, Applicable Analysis and Discrete Mathematics, Vol. 5, No. 1 (April 2011), pp. 60-66; http://www.jstor.org/stable/43666828
  66. Gergő Nemes, An Asymptotic Expansion for the Bernoulli Numbers of the Second Kind, J. Int. Seq. 14 (2011) # 11.4.8
  67. László Németh. Pascal pyramid in the space H2×R. arXiv:1701.06022, [math.CO]. 2017.
  68. László Németh, On the Binomial Interpolated Triangles, Journal of Integer Sequences, Vol. 20 (2017), Article 17.7.8.
  69. László Németh, The trinomial transform triangle, J. Int. Seqs., Vol. 21 (2018), #18.7.3. HTML, also arXiv:1807.07109 [math.NT], 2018. (A000012, A000045, A000073, A000244, A001477, A002378, A003462, A014983, A027907, A033999, A036290, A038608, A082761, A097861, A097893, A097894, A192806.)
  70. László Németh, Tetrahedron trinomial coefficient transform, Integers (2019) Vol. 19, Article A41. Abstract, also arXiv:1905.13475 [math.CO], 2019. (A008778, A023545, A026374, A026375, A026378, A026387, A026388, A028262, A034856, A034942, A085362, A272866)
  71. László Németh, Tilings of (2 × 2 × n)-board with colored cubes and bricks, arXiv:1909.11729 [math.CO], 2019. (A000045, A006253, A030186)
  72. Upama Nepal, Sudip Sapkota, Ashish Bhattarai, Hari Prasad Bashyal, Design, CFD Analysis and Modelling of Archimedean-Spiral type Wind Turbine, Institute of Engineering, Tribhuvan University (Nepal, 2019). PDF
  73. Rafael I. Nepomechie and Francesco Ravanini, Completeness of the Bethe Ansatz solution of the open XXZ chain with nondiagonal boundary terms (2003), arXiv:hep-th/0307095.
  74. R. I. I. Nepomeche, F. Ravanini, doi:10.1088/0305-4470/36/45/003 Completeness of the Bethe Ansatz solution of the open XXZ chain with nondiagonal boundary terms, J. Phys A: Math. Gen. 36 (45) (2003) 11391.
  75. Konstantin Nestmann, Carsten Timm, Time-convolutionless master equation: Perturbative expansions to arbitrary order and application to quantum dots, arXiv:1903.05132 [cond-mat.mes-hall], 2019. (A000629)
  76. Tillmann Nett, Nadine Nett, Andreas Glöckner, Bayesian Analysis of Processed Information in Decision Making Experiments, FernUniversität (Hagen, Germany), University of Cologne (Germany, 2019). doi:10.31234/osf.io/pxwq7 (A039755)
  77. Neudauer, Nancy Ann; Stevens, Brett, Enumeration of the bases of the bicircular matroid on a complete bipartite graph. Ars Combin. 66 (2003), 165-178.
  78. N. Neumarker, Realizability of Integer Sequences as Differences of Fixed Point Count Sequences, JIS 12 (2009) 09.4.5
  79. E. Neuwirth, Computing Tournament Sequence Numbers Efficiently With Matrix Techniques, Séminaire Lotharingien de Combinatoire, B47h (2002), 12 pp.
  80. O. Nevzorova, N. Zhiltsov, A. Kirillovich, E. Lipachev, OntoMath^{PRO} Ontology: A Linked Data Hub for Mathematics, arXiv preprint arXiv:1407.4833, 2014
  81. Lee Aaron Newberg, The number of clone orderings, Discrete Applied Mathematics, Volume 69, Issue 3, 27 August 1996, Pages 233-245.
  82. L. A. Newberg, Finding, Evaluating, and Counting DNA Physical Maps (2002), Doctoral Thesis, University of California at Berkeley, 1993.
  83. Heather A. Newman, Hector Miranda, Darren A. Narayan, Edge-Transitive Graphs, arXiv:1709.04750 [math.CO], 2017.
  84. Jim Newton, Didier Verna, A Theoretical and Numerical Analysis of the Worst-Case Size of Reduced Ordered Binary Decision Diagrams, ACM Transactions on Computational Logic (TOCL) 20.1 (2019), Article 6. doi:10.1145/3274279, also PDF
  85. R Newton, A R Camacho, Strangely dual orbifold equivalence I, arXiv preprint arXiv:1509.08069, 2015.
  86. Louis Ng, Magic counting with inside-out polytopes, Masters Thesis, San Francisco State University, 2018 (A188122)
  87. Louis Ng, Technically, squares are polytopes, Algebraic and Geometric Combinatorics on Lattice Polytopes (2019) 296-308. doi:10.1142/9789811200489_0019
  88. Hieu D. Nguyen, Mathematics by experiment: Exploring patterns of integer sequences
  89. Hieu D. Nguyen, Experimental Mathematics and Data Mining: Excavating the Online Encyclopedia of Integer Sequences, PDF, February 23, 2011
  90. H. D. Nguyen, A mixing of Prouhet-Thue-Morse sequences and Rademacher functions, http://www.rowan.edu/colleges/csm/departments/math/facultystaff/nguyen/papers/mixing-ptm-rademacher.pdf, 2014; Integers, 15 (2016), #A14.
  91. Hien D. Nguyen, GJ McLachlan, Progress on a Conjecture Regarding the Triangular Distribution, arXiv preprint arXiv:1607.04807, 2016
  92. Hieu D. Nguyen, Douglas Taggart, Mining the Online Encyclopedia of Integer Sequences (2013)
  93. Quynh Nguyen, Jean Pedersen, and Hien T. Vu, New Integer Sequences Arising From 3-Period Folding Numbers, Journal of Integer Sequences, #16.3.1, Vol. 19, 2016.
  94. T. Nickson, I. Potapov, Broadcasting Automata and Patterns on Z^2, arXiv preprint arXiv:1410.0573, 2014. Also in Automata, Universality, Computation; Emergence, Complexity and Computation; Volume 12, 2015, pp. 297-340; doi:10.1007/978-3-319-09039-9_14.
  95. H. Niederhausen, Catalan Traffic at the Beach, Electronic Journal of Combinatorics, Volume 9(1), 2002, article #R33.
  96. Heinrich Niederhausen, doi:10.1016/j.jspi.2005.02.013 Random walks in octants and related structures, J. Stat. Planning Inf. 135 (2005), no 1, 165-196.
  97. Heinrich Niederhausen, "A Note on the Enumeration of Diffusion Walks in the First Octant by Their Number of Contacts with the Diagonal", J. Integer Sequences, Volume 8, 2005, Article 05.4.3.
  98. Heinrich Niederhausen, Inverses of Motzkin and Schroeder Paths, arXiv:1105.3713, 2011. Also Integers: 12 (2012).
  99. Juan Miguel Nieto, Tailoring and Hexagon Form Factors, Spinning Strings and Correlation Functions in the AdS/CFT Correspondence, Springer Theses (Recognizing Outstanding Ph.D. Research), Springer, Cham, 2018. doi:10.1007/978-3-319-96020-3_7 (A008302)
  100. Sergey Nikitin, Euler-Fermat algorithm and some of its applications, 2018. PDF (A244453)
  101. Y Nikolayevsky, I Tsartsaflis, Cohomology of N-graded Lie algebras of maximal class over Z_2, arXiv preprint arXiv:1512.07676, 2015
  102. Nill, Benjamin, Volume and lattice points of reflexive simplices. Discrete Comput. Geom. 37 (2007), no. 2, 301-320.
  103. Johan Nilsson, arXiv:1001.3513 On the entropy of random Fibonacci words
  104. Johan Nilsson, arXiv:1110.4228 A space efficient algorithm for the calculation of the digit distribution in the Kolakoski sequence; J. Int. Seq. 15 (2012) #12.6.7
  105. J. Nilsson, Enumeration of basic ideals in type B Lie algebras, arXiv:1204.3771, 2012 and J. Int. Seq. 15 (9) (2012) #12.9.5
  106. J. Nilsson, Letter Frequencies in the Kolakoski Sequence, Acta Physica Polonica A, 126 (2014), 549-552.
  107. J. Nilsson, On Counting the Number of Tilings of a Rectangle with Squares of Size 1 and 2, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.2.
  108. Viorel Niţică, Andrei Török, About Some Relatives of Palindromes, arXiv:1908.00713 [math.NT], 2019. (A305131, A306830)
  109. Viorel Niţică, Jeroz Makhania, About the Orbit Structure of Sequences of Maps of Integers, Symmetry (2019), Vol. 11, No. 11, 1374. doi:10.3390/sym11111374 (A305130, A305131, A306830, A323190)
  110. Mor Nitzan, Shmuel Nitzan, Erel Segal-Halevi, On Level-1 Consensus Ensuring Stable Social Choice, arXiv:1704.06037 [cs.GT], 2017.
  111. Mor Nitzan, S Nitzan, E Segal-Halevi, Flexible level-1 consensus ensuring stable social choice: analysis and algorithms, Social Choice and Welfare, (2017). doi:10.1007/s00355-017-1092-2
  112. R. K. Niven, Combinatorial entropies and statistics, Eur. Phys. J. B 70 (1) (2009) 49-63 doi:10.1140/epjb/e2009-00168-5
  113. S. Nkonkobe, V. Murali, On Some Identities of Barred Preferential Arrangements, arXiv preprint arXiv:1503.06173, 2015
  114. Nkonkobe, S., and V. Murali. "A study of a family of generating functions of Nelsen–Schmidt type and some identities on restricted barred preferential arrangements." Discrete Mathematics, Vol. 340 (2017), 1122-1128.
  115. Sithembele Nkonkobe, Venkat Murali, Béata Bényi, Generalised Barred Preferential Arrangements, arXiv:1907.08944 [math.CO], 2019. (A216794)
  116. A. Nkwanta, Lattice paths and RNA secondary structures, in African Americans in Mathematics, ed. N. Dean, Amer. Math. Soc., 1997, pp. 137-147.
  117. A. Nkwanta, A Riordan matrix approch to unifying a selected class of combinatorial arrays, Congr. Numerantium 160 (2003) 33-45
  118. A. Nkwanta, Riordan matrices and higher-dimensional lattice walks, J. Stat. Plann. Infer. 140 (2010) 2321-2334 doi:10.1016/j.jspi.2010.01.027
  119. Asamoah Nkwanta and Earl R. Barnes, Two Catalan-type Riordan Arrays and their Connections to the Chebyshev Polynomials of the First Kind, Journal of Integer Sequences, Article 12.3.3, 2012.
  120. A. Nkwanta, A. Tefera, Curious Relations and Identities Involving the Catalan Generating Function and Numbers, Journal of Integer Sequences, 16 (2013), #13.9.5.
  121. Albert No, Nonasymptotic Upper Bounds on Binary Single Deletion Codes via Mixed Integer Linear Programming, Entropy (2019) Vol. 21, 1202. doi:10.3390/e21121202 (A265032)
  122. Massimo Nocentini, "An algebraic and combinatorial study of some infinite sequences of numbers supported by symbolic and logic computation", PhD Thesis, University of Florence, 2019.
  123. Massimo Nocentini, Donatella Merlini, Crawling, (pretty) printing, and graphing the OEIS, Dipartimento di Statistica, Informatica, Applicazioni, Università di Firenze (2018). PDF
  124. Laurent Noé, Spaced seed design on profile HMMs for precise HTS read-mapping efficient sliding window product on the matrix semi-group, in Rapide Bilan 2012-2013 Laurent LIFL, Université Lille 1 - INRIA Journées au vert 11 et 12 juin 2013 Laurent Année 2012-2013; PDF
  125. Tony D. Noe, On the Divisibility of Generalized Central Trinomial Coefficients, J. Integer Sequences, Volume 9, 2006, Article 06.2.7.
  126. T. D. Noe, JIS 11 (2008) 08.1.2
  127. Tony D. Noe and Jonathan Vos Post, "Primes in Fibonacci n-step and Lucas n-step Sequences", J. Integer Sequences, Volume 8, 2005, Article 05.4.4.
  128. Diego Noja, Sergio Rolando, Simone Secchi, Standing waves for the NLS on the double-bridge graph and a rational-irrational dichotomy, arXiv:1706.09616 [math.AP], 2017.
  129. J. Noonan, The number of permutations containing exactly one increasing subsequence of length three. Discrete Math. 152 (1996), no. 1-3, 307-313.
  130. J. Noonan and D. Zeilberger, arXiv:math.CO/9806036 The Goulden-Jackson cluster method: extensions, applications and implementations
  131. J. Noonan and D. Zeilberger, The Goulden-Jackson Cluster Method: Extensions, Applications and Implementations, J. Difference Eq. Appl. 5 (1999), 355-377.
  132. Eric Nordenstam, Benjamin Young, Correlations for the Novak process, arXiv:1201.4138, 2012.
  133. Benedict Vasco Normenyo, Bir Kafle, and Alain Togbé, Repdigits as Sums of Two Fibonacci Numbers and Two Lucas Numbers, Integers (2019) Vol. 19, Article A55. PDF (A010785)
  134. William Norledge, Adrian Ocneanu, Hopf monoids, permutohedral tangent cones, and generalized retarded functions, arXiv:1911.11736 [math.CO], 2019. (A034997)
  135. S. Northshield, Stern's diatomic sequence 0, 1, 1, 2, 1, 3, 2, 3, 1, 4, ..., Amer. Math. Monthly, 117 (2010), 581-598.
  136. Sam Northshield, Three analogues of Stern's diatomic sequence, arXiv:1503.03433 [math.CO], 2015.
  137. S. Northshield, An Analogue of Stern's Sequence for Z[sqrt(2)], Journal of Integer Sequences, 18 (2015), #15.11.6.
  138. Sam Northshield, Re^3counting the Rationals, 2018. PDF. (A002478)
  139. E. Norton, Symplectic Reflection Algebras in Positive Characteristic as Ore Extensions, arXiv preprint arXiv:1302.5411, 2013
  140. Eric John Leo Nöth, Analysis of grammar-based tree compression, Dissertation, Eingereicht bei der Naturwissenschaftlich-Technischen Fakultat der Universitat Siegen, Siegen 2016; http://dokumentix.ub.uni-siegen.de/opus/volltexte/2016/1019/pdf/Dissertation_Eric_John_Leo_Noeth.pdf
  141. Mathilde Noual, Dynamics of Circuits and Intersecting Circuits, in LANGUAGE AND AUTOMATA THEORY AND APPLICATIONS, Lecture Notes in Computer Science, 2012, Volume 7183/2012, 433-444, doi:10.1007/978-3-642-28332-1_37, arXiv:1011.3930.
  142. Mathilde Noual and Sylvain Sene, Towards a theory of modelling with Boolean automata networks-I. Theorisation and observations, arXiv:1111.2077, 2011
  143. J. Novak, Three lectures on free probability, arXiv:1205.2097, 2012
  144. J.-C. Novelli, m-dendriform algebras, arXiv preprint arXiv:1406.1616, 2014
  145. Novelli, Jean-Christophe; Reutenauer, Christophe; Thibon, Jean-Yves Generalized descent patterns in permutations and associated Hopf algebras. European J. Combin. 32 (2011), no. 4, 618-627.
  146. J.-C. Novelli and J.-Y. Thibon, arXiv:math.CO/0405597 Free quasi-symmetric functions of arbitrary level
  147. J.-C. Novelli and J.-Y. Thibon, arXiv:math.CO/0511200 Hopf algebras and dendriform structures arising from parking functions, Fund. Math. 193 (2007), no. 3, 189-241.
  148. J.-C. Novelli and J.-Y. Thibon, arXiv:math.CO/0512570 Noncommutative Symmetric Functions and Lagrange Inversion; Advances in Applied Mathematics, Volume 40, Issue 1, January 2008, Pages 8-35.
  149. J.-C. Novelli and J.-Y. Thibon, arXiv:math.CO/0605061 Polynomial realizations of some trialgebras, Proc. Formal Power Series and Algebraic Combinatorics 2006 (San-Diego, June 2006)
  150. Jean-Christophe Novelli and Jean-Yves Thibon, A one-parameter family of dendriform identities (2007), arXiv:0709.3235 and J. Comb. Theory A 116 (4) (2009) 863 doi:10.1016/j.jcta.2008.11.009.
  151. Jean-Christophe Novelli and Jean-Yves Thibon, Free quasi-symmetric functions and descent algebras for wreath products, and noncommutative multi-symmetric functions (2008); arXiv:0806.3682. Discrete Math. 310 (2010), no. 24, 3584-3606.
  152. Jean-Christophe Novelli and Jean-Yves Thibon, Superization and (q,t)-specialization in combinatorial Hopf algebras (2008); arXiv:0803.1816
  153. J.-C. Novelli and J.-Y. Thibon, Duplicial algebras and Lagrange inversion, arXiv:1209.5959, 2012
  154. J.-C. Novelli and J.-Y. Thibon, Binary shuffle bases for quasi-symmetric functions, arXiv preprint arXiv:1305.5032, 2013
  155. J.-C. Novelli, J.-Y. Thibon, Hopf Algebras of m-permutations, (m+1)-ary trees, and m-parking functions, arXiv preprint arXiv:1403.5962, 2014
  156. Jean-Christophe Novelli, Jean-Yves Thibon, On composition polynomials, arXiv:1510.03033 [math.CO], (11-October-2015)
  157. J.-C. Novelli, J.-Y. Thibon and N. M. Thiéry, Algèbres de Hopf de graphes, C.R. Acad. Sci. Paris (Comptes Rendus Mathematique), 339 (2004), 607-610. doi:10.1016/j.crma.2004.09.012 arXiv:0812.3407
  158. Jean-Christophe Novelli, Jean-Yves Thibon, Frédéric Toumazet, Noncommutative Bell polynomials and the dual immaculate basis, arXiv:1705.08113 [math.CO], 2017.
  159. Jean-Christophe Novelli, Jean-Yves Thibon, Frederic Toumazet, A noncommutative cycle index and new bases of quasi-symmetric functions and noncommutative symmetric functions, arXiv:1804.01762 [math.CO], 2018.
  160. J.-C. Novelli, J.-Y. Thibon, L. K. Williams, Combinatorial Hopf algebras, noncommutative Hall-Littlewood functions, and permutation tableaux, Adv. Math. 224 (4) (2010)1311-1348 doi:10.1016/j.aim.2010.01.006
  161. A. Novocin, D. Saunders, A. Stachnik, B. Youse, 3-ranks for strongly regular graphs, in Proceeding PASCO '15 Proceedings of the 2015 International Workshop on Parallel Symbolic Computation, Pages 101-108 ACM New York, NY, USA, doi:10.1145/2790282.2790295
  162. W. G. Nowak and L. Tóth, On the average number of subgroups of the group Z_m X Z_n, arXiv preprint arXiv:1307.1414, 2013.
  163. Richard Nowakowski, Unsolved Problems in Combinatorial Games, Games of No Chance 5 (2017) Vol. 70, See p. 158. Abstract
  164. R. J. Nowakowski, G. Renault, E. Lamoureux, S. Mellon and T. Miller, The Game of timber!, http://www.labri.fr/perso/grenault/NRLMM.pdf, 2013.
  165. A. Nowicki, The numbers a^2+b^2-dc^2, J. Int. Seq. 18 (2015) # 15.2.3
  166. Marc Noy, Graph enumeration, Chapter 6 in 'Handbook of enumerative combinatorics' (2013)
  167. Marc Noy, Juanjo Rue, Counting polygon dissections in the projective plane, Advances in Applied Mathematics, Volume 41, Issue 4, October 2008, Pages 599-619.
  168. Numberphile, Can a number be boring? (feat 14972), https://www.youtube.com/watch?v=VDYzSzDaHuM, 2014.
  169. Arthur Nunge, Eulerian polynomials on segmented permutations. arXiv:1805.01797 [math.CO], 2018. (A000670, A008277, A019538)
  170. G. Nyul, G. Rácz, The r-Lah numbers, Discrete Mathematics, 338 (2015), 1660-1666.
  171. J.-P. Nzali, K. T. Porguy, H. Tapamo, Algorithme de Calcul du degré de retournement d'un graphe planaire topologique, Arima, Volume 1 - 2002.

About this page

  • This is part of the series of OEIS Wiki pages that list works citing the OEIS.
  • Additions to these pages are welcomed.
  • But if you add anything to these pages, please be very careful — remember that this is a scientific database. Spell authors' names, titles of papers, journal names, volume and page numbers, etc., carefully, and preserve the alphabetical ordering.
  • If you are unclear about what to do, contact one of the Editors-in-Chief before proceeding.
  • Works are arranged in alphabetical order by author's last name.
  • Works with the same set of authors are arranged by date, starting with the oldest.
  • The full list of sections is: A Ba Bi Ca Ci D E F G H I J K L M N O P Q R Sa Sl T U V W X Y Z.
  • For further information, see the main page for Works Citing OEIS.