login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A232164 Number of Weyl group elements, not containing an s_r factor, which contribute nonzero terms to Kostant's weight multiplicity formula when computing the multiplicity of the zero-weight in the adjoint representation for the Lie algebra of type C and rank n. 3
0, 1, 1, 2, 6, 12, 25, 57, 124, 268, 588, 1285, 2801, 6118, 13362, 29168, 63685, 139057, 303608, 662888, 1447352, 3160121, 6899745, 15064810, 32892270, 71816436, 156802881, 342360937, 747505396, 1632091412, 3563482500, 7780451037, 16987713169, 37090703118 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

Apart from the offset the same as A214663. - R. J. Mathar, Nov 27 2013

REFERENCES

P. E. Harris, Combinatorial problems related to Kostant's weight multiplicity formula, PhD Dissertation, University of Wisconsin-Milwaukee, 2012.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Alice L. L. Gao, Sergey Kitaev, On partially ordered patterns of length 4 and 5 in permutations, arXiv:1903.08946 [math.CO], 2019.

P. E. Harris, E. Insko, L. K. Williams, The adjoint representation of a Lie algebra and the support of Kostant's weight multiplicity formula, arXiv preprint arXiv:1401.0055, 2013

B. Kostant, A Formula for the Multiplicity of a Weight, Proc Natl Acad Sci U S A. 1958 June; 44(6): 588-589.

Index entries for linear recurrences with constant coefficients, signature (1,1,3,1).

FORMULA

a(n) = A232164(n-1) + A232164(n-2) + 3*A232164(n-3) + A232164(n-4).

a(n) = a(n-1)+a(n-2)+3*a(n-3)+a(n-4). G.f.: -x / (x^4+3*x^3+x^2+x-1). - Colin Barker, Dec 31 2013

EXAMPLE

For n=4, a(4)= A232164(3) + A232164(2) + 3*A232164(1) + A232164(0) = 2+1+3*1+0=6.

MAPLE

a:=proc(n::nonnegint)

if n=0 then return 0:

elif n=1 then return 1:

elif n=2 then return 1:

elif n=3 then return 2:

else return

a(n-1)+a(n-2)+3*a(n-3)+a(n-4):

end if;

end proc:

MATHEMATICA

CoefficientList[Series[x/(1 - x - x^2 -3 x^3- x^4), {x, 0, 30}], x] (* Vincenzo Librandi, Dec 31 2013 *)

PROG

(PARI) Vec(-x/(x^4+3*x^3+x^2+x-1) + O(x^100)) \\ Colin Barker, Dec 31 2013

CROSSREFS

Sequence in context: A140659 A238462 A099495 * A214663 A151385 A034875

Adjacent sequences:  A232161 A232162 A232163 * A232165 A232166 A232167

KEYWORD

nonn,easy

AUTHOR

Pamela E Harris, Nov 19 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 08:49 EST 2019. Contains 329862 sequences. (Running on oeis4.)