login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A232166
Expansion of phi(x) / psi(x^2)^2 in powers of x where phi(), psi() are Ramanujan theta functions.
1
1, 2, -2, -4, 5, 6, -10, -12, 17, 24, -30, -40, 50, 62, -80, -100, 127, 160, -196, -244, 296, 360, -442, -532, 649, 786, -940, -1132, 1347, 1600, -1910, -2260, 2682, 3176, -3734, -4400, 5157, 6032, -7066, -8240, 9616, 11202, -13002, -15096, 17469, 20192
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Euler transform of period 4 sequence [ 2, -5, 2, 1, ...].
EXAMPLE
G.f. = 1 + 2*x - 2*x^2 - 4*x^3 + 5*x^4 + 6*x^5 - 10*x^6 - 12*x^7 + ...
G.f. = 1/q + 2*q - 2*q^3 - 4*q^5 + 5*q^7 + 6*q^9 - 10*q^11 -12*q^13 + ...
MATHEMATICA
a[ n_]:= SeriesCoefficient[4*x^(1/2)*EllipticTheta[3, 0, x]/EllipticTheta[ 2, 0, x]^2, {x, 0, n}];
a[ n_]:= SeriesCoefficient[QPochhammer[x^2]^7/(QPochhammer[x]^2* QPochhammer[x^4]^6), {x, 0, n}];
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^7 / (eta(x + A)^2 * eta(x^4 + A)^6), n))};
CROSSREFS
Sequence in context: A250114 A056219 A085140 * A325555 A138883 A257632
KEYWORD
sign
AUTHOR
Michael Somos, Nov 19 2013
STATUS
approved