login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A232163
Cardinality of the Weyl alternation set corresponding to the zero-weight in the adjoint representation of the Lie algebra so(2n+1).
2
0, 1, 2, 5, 10, 22, 49, 106, 231, 506, 1104, 2409, 5262, 11489, 25082, 54766, 119577, 261078, 570035, 1244610, 2717456, 5933249, 12954570, 28284797, 61756570, 134838326, 294403857, 642796690, 1403472095, 3064318682, 6690584704
OFFSET
0,3
COMMENTS
Number of Weyl group elements contributing nonzero terms to Kostant's weight multiplicity formula when computing the multiplicity of the zero-weight in the adjoint representation for the Lie algebra of type B and rank n.
LINKS
P. E. Harris, Combinatorial problems related to Kostant's weight multiplicity formula, PhD Dissertation, University of Wisconsin-Milwaukee, 2012.
P. E. Harris, E. Insko, and L. K. Williams, The adjoint representation of a Lie algebra and the support of Kostant's weight multiplicity formula, arXiv preprint arXiv:1401.0055 [math.RT], 2013.
B. Kostant, A Formula for the Multiplicity of a Weight, Proc Natl Acad Sci U S A. 1958 June; 44(6): 588-589.
FORMULA
a(n) = A232162(n) + A232162(n-1) + A232162(n-2).
a(n) = a(n-1)+a(n-2)+3*a(n-3)+a(n-4). G.f.: -x*(2*x^2+x+1) / (x^4+3*x^3+x^2+x-1). - Colin Barker, Jan 01 2014
EXAMPLE
For n=8, a(8) = A232162(8) + A232162(7) + A232162(6) = 139+62+30 = 231.
MAPLE
r:=proc(n::nonnegint)
if n=0 then return 0:
elif n=1 then return 0:
elif n=2 then return 2:
elif n=3 then return 3:
else return
r(n-1)+r(n-2)+3*r(n-3)+r(n-4):
end if;
end proc:
a:=proc(n::nonnegint)
if n=0 then return 0:
elif n=1 then return 1:
else return
r(n)+r(n-1)+r(n-2):
end if;
end proc:
MATHEMATICA
LinearRecurrence[{1, 1, 3, 1}, {0, 1, 2, 5}, 31] (* Jean-François Alcover, Nov 26 2017 *)
PROG
(PARI) Vec(-x*(2*x^2+x+1)/(x^4+3*x^3+x^2+x-1) + O(x^100)) \\ Colin Barker, Jan 01 2014
CROSSREFS
Cf. A232162.
Sequence in context: A341020 A123491 A329185 * A166300 A038149 A046745
KEYWORD
nonn,easy
AUTHOR
Pamela E Harris, Nov 19 2013
STATUS
approved