The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A232163 Cardinality of the Weyl alternation set corresponding to the zero-weight in the adjoint representation of the Lie algebra so(2n+1). 2
 0, 1, 2, 5, 10, 22, 49, 106, 231, 506, 1104, 2409, 5262, 11489, 25082, 54766, 119577, 261078, 570035, 1244610, 2717456, 5933249, 12954570, 28284797, 61756570, 134838326, 294403857, 642796690, 1403472095, 3064318682, 6690584704 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Number of Weyl group elements contributing nonzero terms to Kostant's weight multiplicity formula when computing the multiplicity of the zero-weight in the adjoint representation for the Lie algebra of type B and rank n. REFERENCES P. E. Harris, Combinatorial problems related to Kostant's weight multiplicity formula, PhD Dissertation, University of Wisconsin-Milwaukee, 2012. LINKS P. E. Harris, E. Insko, L. K. Williams, The adjoint representation of a Lie algebra and the support of Kostant's weight multiplicity formula, arXiv preprint arXiv:1401.0055, 2013 B. Kostant, A Formula for the Multiplicity of a Weight, Proc Natl Acad Sci U S A. 1958 June; 44(6): 588-589. Index entries for linear recurrences with constant coefficients, signature (1,1,3,1). FORMULA a(n) = A232162(n) + A232162(n-1) + A232162(n-2). a(n) = a(n-1)+a(n-2)+3*a(n-3)+a(n-4). G.f.: -x*(2*x^2+x+1) / (x^4+3*x^3+x^2+x-1). - Colin Barker, Jan 01 2014 EXAMPLE For n=8, a(8) = A232162(8) + A232162(7) + A232162(6) = 139+62+30 = 231. MAPLE r:=proc(n::nonnegint) if n=0 then return 0: elif n=1 then return 0: elif n=2 then return 2: elif n=3 then return 3: else return r(n-1)+r(n-2)+3*r(n-3)+r(n-4): end if; end proc: a:=proc(n::nonnegint) if n=0 then return 0: elif n=1 then return 1: else return r(n)+r(n-1)+r(n-2): end if; end proc: MATHEMATICA LinearRecurrence[{1, 1, 3, 1}, {0, 1, 2, 5}, 31] {* Jean-François Alcover, Nov 26 2017 *) PROG (PARI) Vec(-x*(2*x^2+x+1)/(x^4+3*x^3+x^2+x-1) + O(x^100)) \\ Colin Barker, Jan 01 2014 CROSSREFS Cf. A232162. Sequence in context: A341020 A123491 A329185 * A166300 A038149 A046745 Adjacent sequences: A232160 A232161 A232162 * A232164 A232165 A232166 KEYWORD nonn,easy AUTHOR Pamela E Harris, Nov 19 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 1 17:32 EST 2022. Contains 358470 sequences. (Running on oeis4.)