OFFSET
0,3
REFERENCES
P. E. Harris, Combinatorial problems related to Kostant's weight multiplicity formula, PhD Dissertation, University of Wisconsin-Milwaukee, 2012.
LINKS
Stefano Spezia, Table of n, a(n) for n = 0..2950
P. E. Harris, E. Insko, and L. K. Williams, The adjoint representation of a Lie algebra and the support of Kostant's weight multiplicity formula, arXiv preprint arXiv:1401.0055 [math.RT], 2013.
B. Kostant, A Formula for the Multiplicity of a Weight, Proc Natl Acad Sci U S A. 1958 June; 44(6): 588-589.
László Németh and Dragan Stevanović, Graph solution of system of recurrence equations, Research Gate, 2023. See Table 1 at p. 3.
Index entries for linear recurrences with constant coefficients, signature (1,1,3,1).
FORMULA
From Colin Barker, Dec 31 2013: (Start)
a(n) = a(n-1) + a(n-2) + 3*a(n-3) + a(n-4).
G.f.: -x^2*(x + 2)/(x^4 + 3*x^3 + x^2 + x - 1). (End)
MAPLE
a:=proc(n::nonnegint)
if n=0 then return 0:
elif n=1 then return 0:
elif n=2 then return 2:
elif n=3 then return 3:
else return
a(n-1)+a(n-2)+3*a(n-3)+a(n-4):
end if;
end proc:
MATHEMATICA
LinearRecurrence[{1, 1, 3, 1}, {0, 0, 2, 3}, 32] (* Jean-François Alcover, Nov 24 2017 *)
PROG
(PARI) Vec(-x^2*(x+2)/(x^4+3*x^3+x^2+x-1) + O(x^100)) \\ Colin Barker, Dec 31 2013
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Pamela E Harris, Nov 19 2013
STATUS
approved