login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Cardinality of the Weyl alternation set corresponding to the zero-weight in the adjoint representation of the Lie algebra so(2n+1).
2

%I #34 Mar 02 2024 14:19:27

%S 0,1,2,5,10,22,49,106,231,506,1104,2409,5262,11489,25082,54766,119577,

%T 261078,570035,1244610,2717456,5933249,12954570,28284797,61756570,

%U 134838326,294403857,642796690,1403472095,3064318682,6690584704

%N Cardinality of the Weyl alternation set corresponding to the zero-weight in the adjoint representation of the Lie algebra so(2n+1).

%C Number of Weyl group elements contributing nonzero terms to Kostant's weight multiplicity formula when computing the multiplicity of the zero-weight in the adjoint representation for the Lie algebra of type B and rank n.

%H P. E. Harris, <a href="https://cpb-us-w2.wpmucdn.com/sites.uwm.edu/dist/d/129/files/2016/04/pamela-e-harris-1zu8lyw.pdf">Combinatorial problems related to Kostant's weight multiplicity formula</a>, PhD Dissertation, University of Wisconsin-Milwaukee, 2012.

%H P. E. Harris, E. Insko, and L. K. Williams, <a href="http://arxiv.org/abs/1401.0055">The adjoint representation of a Lie algebra and the support of Kostant's weight multiplicity formula</a>, arXiv preprint arXiv:1401.0055 [math.RT], 2013.

%H B. Kostant, <a href="https://doi.org/10.1073/pnas.44.6.588">A Formula for the Multiplicity of a Weight</a>, Proc Natl Acad Sci U S A. 1958 June; 44(6): 588-589.

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,3,1).

%F a(n) = A232162(n) + A232162(n-1) + A232162(n-2).

%F a(n) = a(n-1)+a(n-2)+3*a(n-3)+a(n-4). G.f.: -x*(2*x^2+x+1) / (x^4+3*x^3+x^2+x-1). - _Colin Barker_, Jan 01 2014

%e For n=8, a(8) = A232162(8) + A232162(7) + A232162(6) = 139+62+30 = 231.

%p r:=proc(n::nonnegint)

%p if n=0 then return 0:

%p elif n=1 then return 0:

%p elif n=2 then return 2:

%p elif n=3 then return 3:

%p else return

%p r(n-1)+r(n-2)+3*r(n-3)+r(n-4):

%p end if;

%p end proc:

%p a:=proc(n::nonnegint)

%p if n=0 then return 0:

%p elif n=1 then return 1:

%p else return

%p r(n)+r(n-1)+r(n-2):

%p end if;

%p end proc:

%t LinearRecurrence[{1, 1, 3, 1}, {0, 1, 2, 5}, 31] (* _Jean-François Alcover_, Nov 26 2017 *)

%o (PARI) Vec(-x*(2*x^2+x+1)/(x^4+3*x^3+x^2+x-1) + O(x^100)) \\ _Colin Barker_, Jan 01 2014

%Y Cf. A232162.

%K nonn,easy

%O 0,3

%A _Pamela E Harris_, Nov 19 2013