login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A365304
a(n) is the smallest nonnegative integer such that the sum of any eight ordered terms a(k), k<=n (repetitions allowed), is unique.
6
0, 1, 9, 73, 333, 1822, 8043, 28296, 102042, 338447, 1054824, 2569353, 6237718, 15947108, 36179796
OFFSET
1,3
COMMENTS
This is the greedy B_8 sequence.
LINKS
J. Cilleruelo and J Jimenez-Urroz, B_h[g] sequences, Mathematika (47) 2000, pp. 109-115.
Melvyn B. Nathanson and Kevin O'Bryant, The fourth positive element in the greedy B_h-set, arXiv:2311.14021 [math.NT], 2023.
Kevin O'Bryant, A complete annotated bibliography of work related to Sidon sequences, Electron. J. Combin., DS11, Dynamic Surveys (2004), 39 pp.
EXAMPLE
a(4) != 70 because 70+1+1+0+0+0+0+0 = 9+9+9+9+9+9+9+0.
PROG
(Python)
def GreedyBh(h, seed, stopat):
A = [set() for _ in range(h+1)]
A[1] = set(seed) # A[i] will hold the i-fold sumset
for j in range(2, h+1): # {2, ..., h}
for x in A[1]:
A[j].update([x+y for y in A[j-1]])
w = max(A[1])+1
while w <= stopat:
wgood = True
for k in range(1, h):
if wgood:
for j in range(k+1, h+1):
if wgood and (A[j].intersection([(j-k)*w + x for x in A[k]]) != set()):
wgood = False
if wgood:
A[1].add(w)
for k in range(2, h+1): # update A[k]
for j in range(1, k):
A[k].update([(k-j)*w + x for x in A[j]])
w += 1
return A[1]
GreedyBh(8, [0], 10000)
(Python)
from itertools import count, islice, combinations_with_replacement
def A365304_gen(): # generator of terms
aset, alist = set(), []
for k in count(0):
bset = set()
for d in combinations_with_replacement(alist+[k], 7):
if (m:=sum(d)+k) in aset:
break
bset.add(m)
else:
yield k
alist.append(k)
aset |= bset
A365304_list = list(islice(A365304_gen(), 10)) # Chai Wah Wu, Sep 01 2023
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Kevin O'Bryant, Aug 31 2023
EXTENSIONS
a(11)-a(15) from Chai Wah Wu, Sep 13 2023
STATUS
approved