login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176675
Sequence defined by the recurrence formula a(n+1)=sum(a(p)*a(n-p)+k,p=0..n)+l for n>=1, with here a(0)=1, a(1)=0, k=0 and l=-1.
2
1, 0, -1, -3, -7, -14, -23, -24, 21, 220, 821, 2261, 4935, 7814, 3615, -34251, -179511, -593420, -1521779, -3001089, -3500101, 4410846, 44902907, 179440150, 526896835, 1212055740, 1976482795, 697522595, -10858119895, -56563343774
OFFSET
0,4
FORMULA
G.f.: f(z) = (1-sqrt(1-4*z*(a(0)-z*a(0)^2+z*a(1)+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z) (k=0, l=-1).
a(n) = sum(k=0..n, (A000108(k) * sum(i=0..n-k, binomial(k+1,n-k-i)*binomial(k+i,k)*(-2)^(n-k-i)))), where A000108 is the Catalan numbers. [Vladimir Kruchinin, Nov 11 2012]
Conjecture: +(n+1)*a(n) +2*(-3*n+1)*a(n-1) +(13*n-21)*a(n-2) +4*(-2*n+5)*a(n-3)=0. - R. J. Mathar, Feb 29 2016
EXAMPLE
a(2)=2*0*1-1=-1. a(2)=2*1*(-1)+0^2-1=-3. a(4)=2*1*(-3)+2*0*(-1)-1=-7.
MAPLE
l:=-1: : k := 0 : m:=0: d(0):=1:d(1):=m: for n from 1 to 30 do d(n+1):=sum(d(p)*d(n-p)+k, p=0..n)+l:od :
taylor((1-sqrt(1-4*z*(d(0)-z*d(0)^2+z*m+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z), z=0, 30); seq(d(n), n=0..30);
PROG
(Maxima) a(n):=sum((binomial(2*k, k)*sum(binomial(k+1, n-k-i)*binomial(k+i, k)*(-2)^(n-k-i), i, 0, n-k))/(k+1), k, 0, n); /* Vladimir Kruchinin, Nov 16 2012 */
(PARI) /* Using Vladimir Kruchinin's formula: */
{A000108(k)=binomial(2*k, k)/(k+1)}
{a(n)=sum(k=0, n, (A000108(k)*sum(i=0, n-k, binomial(k+1, n-k-i)*binomial(k+i, k)*(-2)^(n-k-i))))} \\ Paul D. Hanna, Nov 15 2012
CROSSREFS
Cf. A176648.
Sequence in context: A173209 A331240 A146931 * A377122 A213077 A294400
KEYWORD
easy,sign
AUTHOR
Richard Choulet, Apr 23 2010
STATUS
approved