|
|
A000170
|
|
Number of ways of placing n nonattacking queens on an n X n board.
(Formerly M1958 N0775)
|
|
82
|
|
|
1, 1, 0, 0, 2, 10, 4, 40, 92, 352, 724, 2680, 14200, 73712, 365596, 2279184, 14772512, 95815104, 666090624, 4968057848, 39029188884, 314666222712, 2691008701644, 24233937684440, 227514171973736, 2207893435808352, 22317699616364044, 234907967154122528
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,5
|
|
COMMENTS
|
For n > 3, a(n) is the number of maximum independent vertex sets in the n X n queen graph. - Eric W. Weisstein, Jun 20 2017
Number of nodes on level n of the backtrack tree for the n queens problem (a(n) = A319284(n, n)). - Peter Luschny, Sep 18 2018
Number of permutations of [1...n] such that |p(j)-p(i)| != j-i for i<j. - Xiangyu Chen, Dec 24 2020
M. Simkin shows that the number of ways to place n mutually nonattacking queens on an n X n chessboard is ((1 +/- o(1))*n*exp(-c))^n, where c = 1.942 +/- 0.003. These are approximately (0.143*n)^n configurations. - Peter Luschny, Oct 07 2021
|
|
REFERENCES
|
M. Gardner, The Unexpected Hanging, pp. 190-2, Simon & Shuster NY 1969
Jieh Hsiang, Yuh-Pyng Shieh and Yao-Chiang Chen, The cyclic complete mappings counting problems, in Problems and Problem Sets for ATP, volume 02-10 of DIKU technical reports, G. Sutcliffe, J. Pelletier and C. Suttner, eds., 2002.
D. E. Knuth, The Art of Computer Programming, Volume 4, Pre-fascicle 5B, Introduction to Backtracking, 7.2.2. Backtrack programming. 2018.
Massimo Nocentini, "An algebraic and combinatorial study of some infinite sequences of numbers supported by symbolic and logic computation", PhD Thesis, University of Florence, 2019. See Ex. 67.
W. W. Rouse Ball and H. S. M. Coxeter, Mathematical Recreations and Essays, 13th ed., New York, Dover, 1987, pp. 166-172 (The Eight Queens Problem).
M. A. Sainte-Laguë, Les Réseaux (ou Graphes), Mémorial des Sciences Mathématiques, Fasc. 18, Gauthier-Villars, Paris, 1926, p. 47.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
R. J. Walker, An enumerative technique for a class of combinatorial problems, pp. 91-94 of Proc. Sympos. Applied Math., vol. 10, Amer. Math. Soc., 1960.
M. B. Wells, Elements of Combinatorial Computing. Pergamon, Oxford, 1971, p. 238.
|
|
LINKS
|
Michael Han, Tanya Khovanova, Ella Kim, Evin Liang, Miriam Lubashev, Oleg Polin, Vaibhav Rastogi, Benjamin Taycher, Ada Tsui and Cindy Wei, Fun with Latin Squares, arXiv:2109.01530 [math.HO], 2021.
T. B. Preußer and M. R. Engelhardt, Putting Queens in Carry Chains, No. 27, Journal of Signal Processing Systems, Volume 88, Issue 2, August 2017. (The title refers to the fact that the article discusses the case n = 27.)
I. Rivin, I. Vardi and P. Zimmermann, The n-queens problem, Amer. Math. Monthly, 101 (1994), 629-639.
|
|
FORMULA
|
Strong conjecture: there is a constant c around 2.54 such that a(n) is asymptotic to n!/c^n; weak conjecture: lim_{n -> infinity} (1/n) * log(n!/a(n)) = constant = 0.90.... - Benoit Cloitre, Nov 10 2002
|
|
EXAMPLE
|
a(2) = a(3) = 0, since on 2 X 2 and 3 X 3 chessboards there are no solutions.
.
a(4) = 2:
+---------+ +---------+
| . . Q . | | . Q . . |
| Q . . . | | . . . Q |
| . . . Q | | Q . . . |
| . Q . . | | . . Q . |
+---------+ +---------+
a(5) = 10:
+-----------+ +-----------+ +-----------+ +-----------+ +-----------+
| . . . Q . | | . . Q . . | | . . . . Q | | . . . Q . | | . . . . Q |
| . Q . . . | | . . . . Q | | . . Q . . | | Q . . . . | | . Q . . . |
| . . . . Q | | . Q . . . | | Q . . . . | | . . Q . . | | . . . Q . |
| . . Q . . | | . . . Q . | | . . . Q . | | . . . . Q | | Q . . . . |
| Q . . . . | | Q . . . . | | . Q . . . | | . Q . . . | | . . Q . . |
+-----------+ +-----------+ +-----------+ +-----------+ +-----------+
+-----------+ +-----------+ +-----------+ +-----------+ +-----------+
| Q . . . . | | . Q . . . | | Q . . . . | | . . Q . . | | . Q . . . |
| . . . Q . | | . . . . Q | | . . Q . . | | Q . . . . | | . . . Q . |
| . Q . . . | | . . Q . . | | . . . . Q | | . . . Q . | | Q . . . . |
| . . . . Q | | Q . . . . | | . Q . . . | | . Q . . . | | . . Q . . |
| . . Q . . | | . . . Q . | | . . . Q . | | . . . . Q | | . . . . Q |
+-----------+ +-----------+ +-----------+ +-----------+ +-----------+
a(6) = 4:
+-------------+ +-------------+ +-------------+ +-------------+
| . . . . Q . | | . . . Q . . | | . . Q . . . | | . Q . . . . |
| . . Q . . . | | Q . . . . . | | . . . . . Q | | . . . Q . . |
| Q . . . . . | | . . . . Q . | | . Q . . . . | | . . . . . Q |
| . . . . . Q | | . Q . . . . | | . . . . Q . | | Q . . . . . |
| . . . Q . . | | . . . . . Q | | Q . . . . . | | . . Q . . . |
| . Q . . . . | | . . Q . . . | | . . . Q . . | | . . . . Q . |
+-------------+ +-------------+ +-------------+ +-------------+
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,hard,nice
|
|
AUTHOR
|
|
|
EXTENSIONS
|
Terms for n=21-23 computed by Sylvain PION (Sylvain.Pion(AT)sophia.inria.fr) and Joel-Yann FOURRE (Joel-Yann.Fourre(AT)ens.fr).
a(24) from Kenji KISE (kis(AT)is.uec.ac.jp), Sep 01 2004
a(25) from Objectweb ProActive INRIA Team (proactive(AT)objectweb.org), Jun 11 2005 [Communicated by Alexandre Di Costanzo (Alexandre.Di_Costanzo(AT)sophia.inria.fr)]. This calculation took about 53 years of CPU time.
a(25) has been confirmed by the NTU 25Queen Project at National Taiwan University and Ming Chuan University, led by Yuh-Pyng (Arping) Shieh, Jul 26 2005. This computation took 26613 days CPU time.
The NQueens-at-Home web site gives a different value for a(24), 226732487925864. Thanks to Goran Fagerstrom for pointing this out. I do not know which value is correct. I have therefore created a new entry, A140393, which gives the NQueens-at-home version of the sequence. - N. J. A. Sloane, Jun 18 2008
Added a(26) as calculated by Queens(AT)TUD [http://queens.inf.tu-dresden.de/]. - Thomas B. Preußer, Jul 11 2009
Added a(27) as calculated by the Q27 Project [https://github.com/preusser/q27]. - Thomas B. Preußer, Sep 23 2016
|
|
STATUS
|
approved
|
|
|
|