login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A306830
Integers k for which there exists a nonnegative integer j such that (s(k) + j) * reversal(s(k) + j) = k where s(k) is the sum of digits of k.
1
1, 10, 40, 81, 90, 100, 121, 160, 250, 252, 360, 400, 403, 484, 490, 574, 640, 736, 765, 810, 900, 976, 1000, 1008, 1089, 1207, 1210, 1300, 1458, 1462, 1600, 1612, 1729, 1855, 1936, 1944, 2268, 2296, 2430, 2500, 2520, 2668, 2701, 2944, 3025, 3154, 3478, 3600, 3627, 3640, 4000, 4030, 4032, 4275
OFFSET
1,2
COMMENTS
Subsequence of A305231. This sequence excludes for example 4 = (s(4) + (-2)) * (s(4) + (-2)) from that sequence. - David A. Corneth, Apr 15 2019
LINKS
Viorel Nitica, Andrei Török, About Some Relatives of Palindromes, arXiv:1908.00713 [math.NT], 2019.
Viorel Niţică, Jeroz Makhania, About the Orbit Structure of Sequences of Maps of Integers, Symmetry (2019), Vol. 11, No. 11, 1374.
EXAMPLE
The sum of the digits of 90 is 9 and (9+21)*reversal(9+21) = 30*3 = 90, so 90 is in the sequence.
The sum of the digits of 2268 is 18 and (18 + 18)*reversal(18 + 18) = 36*63 = 2268, so 2268 is in the sequence.
MATHEMATICA
okQ[k_] := Module[{s, j}, s = Total[IntegerDigits[k]]; For[j = 0, j<k, j++, If[(s+j)IntegerReverse[s+j] == k, Print["k = ", k , ", j = ", j]; Return[ True]]]; False]; Reap[Do[If[okQ[k], Sow[k]], {k, 1, 4275}]][[2, 1]] (* Jean-François Alcover, Mar 17 2019 *)
PROG
(PARI) isok(k) = {my(s = sumdigits(k)); fordiv(k, d, if ((d>=s) && (k/d == fromdigits(Vecrev(digits(d)))), return (1)); ); return (0); } \\ Michel Marcus, Mar 13 2019
(PARI) upto(n) = {my(res = List([1, 10, 40, 81, 90]), m = 0); for(i = 10, 10*sqrtint(n), revi = fromdigits(Vecrev(digits(i))); if(revi <= i && i * revi <= n, m = i; listput(res, i * revi); ) ); q = #res; for(i = 1, #q, for(j = 1, logint(n \ res[i], 10), listput(res, res[i]*10^j); ) ); listsort(res, 1); res } \\ David A. Corneth, Apr 15 2019
CROSSREFS
Cf. A004086 (reversal), A007953 (sum of digits), A027750 (divisors), A305231.
Sequence in context: A108777 A000132 A328093 * A305131 A217073 A210376
KEYWORD
nonn,base
AUTHOR
Viorel Nitica, Mar 12 2019
EXTENSIONS
Name clarified by David A. Corneth, Apr 15 2019
STATUS
approved