login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A023545
Convolution of natural numbers >= 2 and natural numbers >= 3.
1
6, 17, 34, 58, 90, 131, 182, 244, 318, 405, 506, 622, 754, 903, 1070, 1256, 1462, 1689, 1938, 2210, 2506, 2827, 3174, 3548, 3950, 4381, 4842, 5334, 5858, 6415, 7006, 7632, 8294, 8993, 9730, 10506, 11322, 12179, 13078, 14020, 15006, 16037, 17114, 18238, 19410, 20631
OFFSET
1,1
LINKS
László Németh, Tetrahedron trinomial coefficient transform, arXiv:1905.13475 [math.CO], 2019.
FORMULA
a(n) = n*(n^2 + 12*n + 23)/6. - Ralf Stephan, Feb 15 2004; corrected by Lucas Sidiropoulos (lsid77(AT)yahoo.com), Jun 23 2008
From Colin Barker, Jun 20 2012: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
G.f.: x*(2 - x)*(3 - 2*x)/(1 - x)^4. (End)
E.g.f.: exp(x)*x*(36 + 15*x + x^2)/6. - Stefano Spezia, Mar 28 2023
MATHEMATICA
CoefficientList[Series[(2-x)*(3-2*x)/(1-x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Jun 29 2012 *)
LinearRecurrence[{4, -6, 4, -1}, {6, 17, 34, 58}, 50] (* Harvey P. Dale, Aug 10 2014 *)
PROG
(Magma) I:=[6, 17, 34, 58]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jun 29 2012
CROSSREFS
Sequence in context: A066486 A301719 A056109 * A038633 A083045 A012277
KEYWORD
nonn,easy
STATUS
approved