This site is supported by donations to The OEIS Foundation.

# CiteD

"Finding a good conjecture [for an integral] relies often on the usage of other Information and Communication Technologies (ICTs), such as online databases, in particular the Online Encyclopedia of Integer Sequences [11]. It provides formulas, references to literature, but also source code for the usage of a CAS. ... Searching these databases is valuable also for cases where the student can compute the integral, as it enables finding new connections with other mathematical fields." [Thierry Dana-Picard and David G. Zeitoun, 2017]

"... those concerned with mathematical heuristics have found that it is useful and makes good sense to create the Online Encyclopedia of Integer Sequences that will attempt to identify a finite sequence from among a large and growing database of sequences that have arisen in theoretical work." [Philip J. Davis, 2014]

"The connection between these two appearances would probably not have occurred without Sloane's Handbook of Integer Sequences ..." [E. Deutsch and L. Shapiro, 2001]

"We encounter the amazingly interesting and helpful on-line mathematical tool OEIS ..."" [Karl Dilcher and Larry Ericksen, 2015]

"It should be mentioned that all 5 identities in Corollary 6 were first found experimentally by using MAPLE and the OEIS." [Karl Dilcher and Christophe Vignat, 2018]

"Fortunately, when analyzing computational data for z(n, k, m), we searched the OEIS [1] for the case m = 0, which yielded an unexpected connection with the sequence A046854." [Jeremy M. Dover, 2016]

"The OEIS (2013) was very helpful in identifying the rencontre numbers in some apparently unrelated work, and thus lead to the tree construction that is the focus of the present paper." [P. Duchon and R. Duvignau, 2014]

"The Online Encyclopedia of Integer Sequences [OE] was useful in discovering the formula in part (b)." [D. Dugger, 2012]

• This is part of the series of OEIS Wiki pages that list works citing the OEIS.
• Additions to these pages are welcomed.
• But if you add anything to these pages, please be very careful — remember that this is a scientific database. Spell authors' names, titles of papers, journal names, volume and page numbers, etc., carefully, and preserve the alphabetical ordering.
• If you are unclear about what to do, contact one of the Editors-in-Chief before proceeding.
• Works are arranged in alphabetical order by author's last name.
• Works with the same set of authors are arranged by date, starting with the oldest.
• This section lists works in which the first author's name begins with D.
• The full list of sections is: .
• For further information, see the main page for Works Citing OEIS.

## References

1. D'Andrea, Carlos; Hare, Kevin G. On the height of the Sylvester resultant. Experiment. Math. 13 (2004), no. 3, 331-341.
2. Alma D'Aniello, A de Luca, A De Luca, On Christoffel and standard words and their derivatives, arXiv preprint arXiv:1602.03231, 2016
3. D'Antona, Ottavio M.; Munarini, Emanuele, A combinatorial interpretation of the connection constants for persistent sequences of polynomials. European J. Combin. 26 (2005), no. 7, 1105-1118.
4. R. D'Mello, Marshall Hall's Conjecture and Gaps Between Integer Points on Mordell Elliptic Curves, arXiv preprint arXiv:1410.0078, 2014.
5. Henrique F. da Cruz, Ilda Inácio, Rogério Serôdio, Convertible subspaces that arise from different numberings of the vertices of a graph, Ars Mathematica Contemporanea (2019) Vol. 16, No. 2, 473-486. doi:10.26493/1855-3974.1477.1c7 (A000045, A006190)
6. C. M. da Fonseca, Unifying some Pell and Fibonacci identities, Applied Mathematics and Computation, Volume 236, 1 June 2014, Pages 41-42,
7. CM da Fonseca, ML Glasser, V Kowalenko, Basic trigonometric power sums with applications, arXiv preprint arXiv:1601.07839, 2016
8. Carlos M. da Fonseca, M. Lawrence Glasser, Victor Kowalenko, Generalized cosecant numbers and trigonometric inverse power sums, Applicable Analysis and Discrete Mathematics, Vol. 12, No. 1 (2018), 70-109. doi:10.2298/AADM1801070F (A111354, A123751)
9. Carlos M. da Fonseca, On a closed form for derangement numbers: an elementary proof, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas (2020) Vol. 114, Article No. 146. doi:10.1007/s13398-020-00879-3
10. Ilda P.F. da Silva, Recursivity and geometry of the hypercube, Linear Algebra and its Applications, Volume 397, 1 March 2005, Pages 223-233.
11. Poly H. da Silva, Arash Jamshidpey, Simon Tavaré, Random derangements and the Ewens Sampling Formula, arXiv:2006.04840 [math.PR], 2020. (A038205)
12. Robson da Silva, Kelvin S. de Oliveira, Almir C. G. Netom, On a four-parameters generalization of some special sequences, arXiv:1705.04978 [math.NT], 2017.
13. Matthew Dabkowski, N Fan, R Breiger, Exploratory blockmodeling for one-mode, unsigned, deterministic networks using integer programming and structural equivalence, Social Networks, Volume 47, October 2016, Pages 93–106; doi:10.1016/j.socnet.2016.05.005
14. S. Daboul, J. Mangaldan, M. Z. Spivey and P. Taylor, The Lah Numbers and the nth Derivative of exp(1/x), http://math.pugetsound.edu/~mspivey/Exp.pdf.
15. Adrian Dacko, <a href="https://arxiv.org/abs/1901.06342">V-monotone independence</a>, arXiv:1901.06342 [math.FA], 2019. (A001147, A306228)
16. Björn Dagerman, High-Level Decision Making in Adversarial Environments using Behavior Trees and Monte Carlo Tree Search, Master's Thesis, Kungliga Tekniska Högskolan, 2017.
17. G Dahl, TA Haufmann, Zero-one completely positive matrices and the A(R,S) classes, Preprint, 2016; https://www.researchgate.net/profile/Geir_Dahl/publication/303684695_Zero-one_completely_positive_matrices_and_the_AR_S_classes/links/574d4e6308aec988526a3045.pdf
18. Paul Dahlenberg and T. Edgar, Consecutive factorial base Niven numbers, Fib. Q., 56:2 (2018), 163-166.
19. Rafael Dahmen, W. Steven Gray, Alexander Schmeding, Continuity of Chen-Fliess Series for Applications in System Identification and Machine Learning, arXiv:2002.10140 [math.OC], 2020. (A000108)
20. Dairyko, Michael; Tyner, Samantha; Pudwell, Lara; Wynn, Casey. Non-contiguous pattern avoidance in binary trees. Electron. J. Combin. 19 (2012), no. 3, Paper 22, 21 pp. MR2967227.
21. M. R. T. Dale, J. W. Moon, The permuted analogues of three Catalan sets, Journal of Statistical Planning and Inference, Volume 34, Issue 1, January 1993, Pages 75-87.
22. Paul Dalenberg, Tom Edgar, Consecutive factorial base Niven numbers, Fibonacci Quart. (2018) Vol. 56, No. 2, 163-166. Issue Contents (A005349, A014417, A049445, A064150, A064438)
23. Cristina Dalfó, From subKautz digraphs to cyclic Kautz digraphs, arXiv:1709.01882 [math.CO] 2017.
24. C. Dalfó, The spectra of subKautz and cyclic Kautz digraphs, Linear Algebra and its Applications, 531 (2017), p. 210-219. doi:10.1016/j.laa.2017.05.046
25. Cristina Dalfó, A new general family of mixed graphs, Discrete Applied Mathematics (2019). doi:10.1016/j.dam.2018.12.016
26. C Dalfó, MA Fiol, A Note on the Order of Iterated Line Digraphs, Journal of Graph Theory, Volume 85, Issue 2, June 2017, Pages 395–39, 2016; doi:10.1002/jgt.22068; arXiv:1607.08832, 2016.
27. Cristina Dalfó, Miquel Angel Fiol, Spectra and eigenspaces from regular partitions of Cayley (di)graphs of permutation groups, arXiv:1906.05851 [math.CO], 2019. (A058986)
28. Daniel Daly, doi:10.1007/s00026-010-0051-8 Fibonacci numbers, reduced decompositions and 321/3412 pattern classes, Ann. Combin. 14 (1) (2010) 53-64
29. D. Daly and L. Pudwell, Pattern avoidance in rook monoids, 2013; http://faculty.valpo.edu/lpudwell/slides/sandiego2013.pdf
30. David Damanik, Local symmetries in the period-doubling sequence, Discrete Applied Mathematics, Volume 100, Issues 1-2, 15 March 2000, Pages 115-121.
31. Gábor Damásdi, Stefan Felsner, António Girão, Balázs Keszegh, David Lewis, Dániel T. Nagy, Torsten Ueckerdt, On Covering Numbers, Young Diagrams, and the Local Dimension of Posets, arXiv:2001.06367 [math.CO], 2020. (A001206)
32. Celeste Damiani, Paul Martin, Eric C. Rowell, Generalisations of Hecke algebras from Loop Braid Groups, arXiv:2008.04840 [math.GT], 2020. (A032443)
33. H. M. Damm, Prüfziffernsysteme über Quasigruppen, Diplomarbeit Univ. Marburg, 1998.
34. Damm, Michael, Check digit systems over groups and anti-symmetric mappings. Arch. Math. (Basel) 75 (2000), no. 6, 413-421.
35. Thierry Dana-Picard:, Explicit closed forms for parametric integrals, Int. J. Math. Ed. Sci. Tech. 35 (3) (2004), 456-467.
36. Thierry Dana-Picard:, Parametric integrals and Catalan numbers, Int. J. Math. Ed. Sci. Tech. 36 (4), 410-414.
37. Thierry Dana-Picard, "Sequences of Definite Integrals, Factorials and Double Factorials", J. Integer Sequences, Volume 8, 2005, Article 05.4.6.
38. T. Dana-Picard, Motivating constraints of a pedagogy-embedded computer algebra system, Int. J. Sci. math. Educ. 5 (2) (2007) 217 doi:10.1007/s10763-006-9052-9
39. Thierry Dana-Picard, doi:10.1080/0020739X.2010.519792 Integral representations of Catalan numbers and Wallis formula], Int. J. Math. Ed. Sci. Techn. 42 (1) (2011) 122-129
40. Thierry Dana-Picard and D. Zeitoun (2009): Closed forms for 4-parameter families of integrals, International Journal of Mathematical Education in Science and Technology 40 (6), 828-837.
41. Thierry Dana-Picard and David G. Zeitoun, Sequences of definite integrals, infinite series and Stirling numbers, International Journal of Mathematical Education in Science and Technology, jun 19 2011, doi:10.1080/0020739X.2011.582172
42. Thierry Dana-Picard & David Zeitoun (2016): Exploration of parametric integrals related to a question of soil mechanics, International Journal of Mathematical Education in Science and Technology, doi:10.1080/0020739X.2016.1256445
43. Thierry Dana-Picard and David G. Zeitoun, A Framework for an ICT-Based Study of Parametric Integrals, Mathematics in Computer Science, December 2017, Volume 11, Issue 3–4, pp. 285–296. doi:10.1007/s11786-017-0299-z ["Finding a good conjecture [for an integral] relies often on the usage of other Information and Communication Technologies (ICTs), such as online databases, in particular the Online Encyclopedia of Integer Sequences [11]. It provides formulas, references to literature, but also source code for the usage of a CAS. ... Searching these databases is valuable also for cases where the student can compute the integral, as it enables finding new connections with other mathematical fields."]
44. Thierry Dana-Picard, David G. Zeitoun, Parametric integrals, combinatorial identities and applications, Applications of Computer Algebra (ACA 2019, Montréal, Canada) École de technologie supérieure. PDF The Online Encyclopedia of Integer Sequences (oeis.org). Experiments with the [computer algebra system] provide the first terms of the sequences of integrals. Using the database, candidates to describe the sequence (I_n) are obtained. Determination of a closed formula is made easier.
45. Lars Eirik Danielsen, On Self-Dual Quantum Codes, Graphs and Boolean Functions (2005), arXiv:quant-ph/0503236.
46. Lars Eirik Danielsen, Classification of Hermitian Self-Dual Additive Codes over GF(9), Arxiv preprint arXiv:1106.2428, 2011
47. Danielsen, Lars Eirik; Gulliver, T. Aaron; Parker, Matthew G. Aperiodic propagation criteria for Boolean functions. Inform. and Comput. 204 (2006), no. 5, 741-770.
48. Lars Eirik Danielsen and Matthew G. Parker, Spectral Orbits and Peak-to-Average Power Ratio of Boolean Functions with respect to the {I,H,N}^n Transform (2005), arXiv:cs/0504102. In Sequences and Their Applications-SETA 2004, Lecture Notes in Computer Science, Volume 3486/2005, Springer-Verlag.
49. Danielsen, Lars Eirik; Parker, Matthew G. On the classification of all self-dual additive codes over GF(4) of length up to 12. J. Combin. Theory Ser. A 113 (2006), no. 7, 1351-1367.
50. Lars Eirik Danielsen and Matthew G. Parker, Edge Local Complementation and Equivalence of Binary Linear Codes (2007), arXiv:0710.2243.
51. Lars Eirik Danielsen, Matthew G. Parker, Interlace Polynomials: Enumeration, Unimodality, and Connections to Codes (2008); arXiv:0804.2576 and Discr. Appl. Math. 158 (6) (2010) 636-648 doi:10.1016/j.dam.2009.11.011
52. Lars Eirik Danielsen and Matthew G. Parker, Directed Graph Representation of Half-Rate Additive Codes over GF(4) (2009) arXiv:0902.3883
53. A. Darte, D. Chavarria-Miranda, R. Fowler and J. Mellor-Crummey, Latin hyper-rectangles for efficient parallelization of line-sweep computations, Submitted to the Annals of Operations Research, December 2001.
54. A. Darte, D. Chavarria-Miranda, R. Fowler and J. Mellor-Crummey, Generalized Multipartitioning, in Informal Proceedings of LACSI (Los Alamos Computer Science Institute) 2001 Symposium, Santa Fe, New Mexico, October 2001. [ps.gz, pdf]
55. A. Darte, D. Chavarria-Miranda, R. Fowler and J. Mellor-Crummey, "Generalized Multipartitioning for Multi-Dimensional Arrays", in Proceedings of International Parallel and Distributed Processing Symposium, Fort Lauderdale, FL, April 2002. Selected as Best Paper (gzipped Postscript, PDF)
56. Alain Darte, John Mellor-Crummey, Robert Fowler, Daniel Chavarria-Miranda, Generalized multipartitioning of multi-dimensional arrays for parallelizing line-sweep computations, Journal of Parallel and Distributed Computing, Volume 63, Issue 9, September 2003, Pages 887-911.
57. Cecile Dartyge, Florian Luca and Pantelimon Stnic, On digit sums of multiples of an integer, Journal of Number Theory, 129 (2009), 2820-2830.
58. Narendrakumar R. Dasre, Pritam Gujarathi, Approximating the Bounds for Number of Partially Ordered Sets with n Labeled Elements, Computing in Engineering and Technology, Advances in Intelligent Systems and Computing, Vol. 1025, Springer (Singapore 2019), 349-356. doi:10.1007/978-981-32-9515-5_33 (A001035)
59. Sandrine Dassehartaut and Pawel Hitczenko, Greek letters in random staircase tableaux, PDF and Random Struct. Algorithms 42, No. 1, 73-96 (2013) doi:10.1002/rsa.20405
60. Manosij Ghosh Dastidar and Sourav Sen Gupta, Generalization of a few results in Integer Partitions, Arxiv preprint arXiv:1111.0094, 2011
61. Shouvik Datta, MR Gaberdiel, W Li, C Peng, Twisted sectors from plane partitions, arXiv preprint arXiv:1606.07070, 2016
62. G. Dattoli, E. Di Palma, E. Sabia, Cardan Polynomials, Chebyshev Exponents, Ultra-Radicals and Generalized Imaginary Units, Advances in Applied Clifford Algebras, 2014
63. G Dattoli, K Górska, A Horzela, KA Penson, E Sabia, Theory of relativistic heat polynomials and one-sided Lévy distributions, 2016; https://www.researchgate.net/profile/Giuseppe_Dattoli2/publication/306100458_Theory_of_relativistic_heat_polynomials_and_one-sided_Levy_distributions/links/57b1819d08aeb2cf17c4be1c.pdf
64. Leonard Dăuş, Marilena Jianu, Full Hermite interpolation of the reliability of a hammock network, Applicable Analysis and Discrete Mathematics (2020) Vol. 14, 198-220. doi:10.2298/AADM190805017D
65. Dennis E. Davenport, Lara K. Pudwell, Louis W. Shapiro, Leon C. Woodson, The Boundary of Ordered Trees, Journal of Integer Sequences, Vol. 18 (2015), Article 15.5.8. (A000108 A000245 A000344 A000957 A000984 A001700 A014137 A068551 A228180 A228197 A228343)
66. D. E. Davenport, L. W. Shapiro and L. C. Woodson, The Double Riordan Group, The Electronic Journal of Combinatorics, 18(2) (2012), #P33.
67. Dennis E. Davenport, Louis W. Shapiro, Leon C. Woodson, A bijection between the triangulations of convex polygons and ordered trees, Integers (2020) Vol. 20, Article #A8. PDF (A000108, A000957, A000958, A001003, A114487) In our research several sequences were found which are in the Online Encyclopedia of Integer Sequences (OEIS); the A-numbers refer to this source.
68. J. H. Davenport, International Symposium on Symbolic and Algebraic Computation (ISSAC 2014), 2014; http://people.bath.ac.uk/masjhd/Meetings/JHDonISSAC2014.pdf
69. James Davenport, Bjorn Poonen, James Maynard, Harald Helfgott, Pham Huu Tiep, Luís Cruz-Filipe, Machine-Assisted Proofs (ICM 2018 Panel), arXiv:1809.08062 [math.HO], 2018.
70. Ori DAVIDOV and Shyamal PEDDADA, Order-Restricted Inference for Multivariate Binary Data With Application to Toxicology, Journal of the American Statistical Association, December 1, 2011, 106(496): 1394-1404, doi:10.1198/jasa.2011.tm10322.
71. Aharon Davidson, From Planck Area to Graph Theory: Topologically Distinct Black Hole Microstates, arXiv:1907.03090 [gr-qc], 2019. (A000011, A000109, A243787)
72. Clintin P. Davis-Stober, Jean-Paul Doignon, Samuel Fiorini, François Glineur, Michel Regenwetter, Extended Formulations for Order Polytopes through Network Flows, arXiv:1710.02679 [math.OC], 2017. (A000262)
73. Donald M. Davis, A lower bound for higher topological complexity of real projective space, arXiv:1709.04443 [math.AT], 2017.
74. Donald M. Davis, Enumerating lattices of subsets, arXiv preprint arXiv:1311.6664, 2013
75. Matt Davis, Quadrant Marked Mesh Patterns and the r-Stirling Numbers- arXiv preprint arXiv:1412.0345, 2014 and J. Int. Seq. 18 (2015) 15.10.1
76. Nichole Davis, Dominic Klyve and Nicole Kraght, On the difference between an integer and the sum of its proper divisors, Involve, Vol. 6 (2013), No. 4, 493-504; doi:10.2140/involve.2013.6.493
77. Philip J. Davis, The relevance of the irrelevant beginning, Science Open Research, 2014; https://www.science-open.com/document_file/bbb13cb9-819d-40ee-88c4-93da7a9837ee/ScienceOpen/1126_XE4980413325094859252.pdf ["... those concerned with mathematical heuristics have found that it is useful and makes good sense to create the Online Encyclopedia of Integer Sequences that will attempt to identify a finite sequence from among a large and growing database of sequences that have arisen in theoretical work."]
78. Robert Davis, Greg Simay, Further Combinatorics and Applications of Two-Toned Tilings, arXiv:2001.11089 [math.CO], 2020. (A000096, A001782, A001788, A001793, A045623, A049611, A055580, A055581, A055582, A055583, A058396, A062109, A081277, A169792, A169793)
79. B. A. Dawson, The Algorithmic Beauty of Music: Approaches to Computer-Aided Algorithmic Composition, http://brucedawson.net/wp-content/uploads/2015/05/DAWSONBRUCE_THESIS_PDF.pdf, 2015. [...includes automatic melody generation using the Online Encyclopedia of Integer Sequences...]
80. R. J. M. Dawson, Tilings of the sphere with isosceles triangles, Discrete Comput. Geom. 30 (2003), 467-487.
81. R. J. MacG. Dawson, doi:10.1007/s00022-010-0044-0 Monotone and Cebysev arcs in hyperspaces], J. Geom. 98 (1-2) (2010) 1-19
82. Robert J. MacG. Dawson, On Some Sequences Related to Sums of Powers, J. Int. Seq., Vol. 21 (2018), Article 18.7.6. HTML (A000124, A000217, A000330, A000537, A003226, A007185, A016090, A033819, A067270, A093534, A301912) I would like to thank ... various editors of the OEIS and JIS for helpful comments, and the anonymous referee for many helpful suggestions.
83. Christian Dayé, The Oracle's Epistemology: Expert Opinions as Scientific Material, 1955–1960; Experts, Social Scientists, and Techniques of Prognosis in Cold War America, Socio-Historical Studies of the Social and Human Sciences book series (SHSSHS, 2019), 129-156. doi:10.1007/978-3-030-32781-1_5
84. D. E. Daykin, D. J. Kleitman and D. B. West, The number of meets between two subsets of a lattice, Journal of Combinatorial Theory, Series A, Volume 26, Issue 2, March 1979, Pages 135-156.
85. Mahadi Ddamulira, On the x−coordinates of Pell equations which are sums of two Padovan numbers, arXiv:1905.11322 [math.NT], 2019. (A000931)
86. Mahadi Ddamulira, On the x-coordinates of Pell equations which are products of two Pell numbers, arXiv:1906.06330 [math.NT], 2019. (A000129)
87. Mahadi Ddamulira, On the x-coordinates of Pell equations which are products of two Lucas numbers, arXiv:1906.06330v2 [math.NT], 2019. (A000032)
88. Mahadi Ddamulira, On the x–coordinates of Pell equations that are products of two Padovan numbers, Integers: Electronic Journal of Combinatorial Number Theory, State University of West Georgia,Charles University, and DIMATIA, hal-02471858. Abstract (A000931)
89. Mahadi Ddamulira, Padovan numbers that are concatenations of two distinct repdigits, arXiv:2003.10705 [math.NT], 2020. (A000931, A010785)
90. Mahadi Ddamulira, Florian Luca, The x−coordinates of Pell equations and sums of two Fibonacci numbers II, (2019) [math.NT]. Abstract (A000045)
91. Mahadi Ddamulira, Repdigits as sums of three balancing numbers, Mathematica Slovaca (2019) hal-02405969. PDF (A001109, A010785)
92. Mahadi Ddamulira, Tribonacci numbers that are concatenations of two repdigits, hal-02547159, Mathematics [math] / Number Theory [math.NT], 2020. Abstract (A000073, A010785)
93. Mahadi Ddamulira, Padovan numbers that are concatenations of two distinct repdigits, Cambridge Open Engage (2020) preprint. doi:10.33774/coe-2020-smm9j-v2 (A000931, A010785)
94. Hernan de Alba, W Carballosa, J Leaños, LM Rivera, Independence and matching numbers of some token graphs, arXiv preprint arXiv:1606.06370, 2016
95. R. F. de Andrade, E. Lundberg, B, Nagle, Asymptotics of the Extremal Excedance Set Statistic, arXiv preprint arXiv:1403.0691, 2014
96. C. P. de Andrade, J. P. de Oliveira Santos, E. V. P. da Silva and K. C. P. Silva, Polynomial Generalizations and Combinatorial Interpretations for Sequences Including the Fibonacci and Pell Numbers, Open Journal of Discrete Mathematics, 2013, 3, 25-32 doi:10.4236/ojdm.2013.31006.
97. De Angelis, Valerio, and Dominic Marcello. "Wilf′ s Conjecture." The American Mathematical Monthly 123.6 (2016): 557-573.
98. Stijn De Baerdemacker, A De Vos, L Chen, L Yu, The Birkhoff theorem for unitary matrices of arbitrary dimensions, arXiv preprint arXiv:1606.08642, 2016
99. Bernard De Baets, Radko Mesiar, Triangular norms on product lattices, Fuzzy Sets and Systems, Volume 104, Issue 1, 16 May 1999, Pages 61-75.
100. P. de Castro et al., Counting binomial coefficients divisible by a prime power, Amer. Math. Monthly, 125 (2018), 531-540.
101. R. De Castro, A. L. Ramírez and J. L. Ramírez, Applications in Enumerative Combinatorics of Infinite Weighted Automata and Graphs, arXiv preprint arXiv:1310.2449, 2013
102. Patrick De Causmaecker and Stefan De Wannemacker, Partitioning in the space of anti-monotonic functions, arXiv:1103.2877.
103. P. De Causmaecker, S. De Wannemacker, Decomposition of Intervals in the Space of Anti-Monotonic Functions, in Manuel Ojeda-Aciego, Jan Outrata (Eds.): CLA 2013, pp. 57{67, ISBN 978{2{7466{6566{8, Laboratory L3i, University of La Rochelle, 2013; http://ceur-ws.org/Vol-1062/proceedings-cla2013.pdf#page=69.
104. P. De Causmaecker, S. De Wannemacker, On the number of antichains of sets in a finite universe, arXiv preprint arXiv:1407.4288, 2014
105. P De Causmaecker, S De Wannemacker, J Yellen, Intervals of Antichains and Their Decompositions, arXiv preprint arXiv:1602.04675, 2016
106. D. de Cogan, W. J. O'Connor, X. Gui, doi:10.1002/nme.1269 Accelerated convergence in TLM algorithms for the Laplace equation] Int. J. Num. Methods Engin. 63 (1) (2005) 122-138
107. Florent de Dinechin, Matei Istoan, Guillaume Sergent, Kinga Illyes, Bogdan Popa and Nicolas Brunie, Arithmetic around the bit heap, http://hal.archives-ouvertes.fr/docs/00/73/84/12/PDF/2012-BitHeap.pdf, 2012.
108. Edson de Faria & Charles Tresser (2014) On Sloane’s Persistence Problem, Experimental Mathematics, 23 (2014), 363-382, doi:10.1080/10586458.2014.910849
109. Luca De Feo, David Jao and Jerome Plut, Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies, http://www.prism.uvsq.fr/~dfl/fichiers/pq-long.pdf
110. Jan de Gier, Bernard Nienhuis, doi:10.1088/1742-5468/2005/01/P01006 Brauer loops and the commuting variety, J. Stat. Mechan.: Theor. Exp. vol. 2005 (2005) #P01006
111. Jins de Jong, Alexander Hock, Raimar Wulkenhaar, Catalan tables and a recursion relation in noncommutative quantum field theory, arXiv:1904.11231 [math-ph], 2019. (A001764, A006013)
112. Jean-Marie De Koninck and Nicolas Doyon, "Large and Small Gaps Between Consecutive Niven Numbers", J. Integer Sequences, Volume 6, 2003, Article 03.2.5.
113. J.-M. De Konink, F. Luca, Positive integers n such that sigma(phi(n))=sigma(n), JIS 11 (2008) 08.1.5
114. J. de la Cal, J. Carcamo, Set partitions and moments of random variables, J. Math. Anal. Applic. 378 (2011) 16 doi:10.1016/j.jmaa.2011.01.002
115. P. de la Harpe, Topics in geometric group theory - mise a jour, preprints de la Section de mathematiques de l'Universite de Geneve, 2001. (PostScript, Pdf)
116. David de Laat, Fabrício Caluza Machado, Fernando Mário de Oliveira Filho, Frank Vallentin, k-point semidefinite programming bounds for equiangular lines, arXiv:1812.06045 [math.OC], 2018. (A002853)
117. Jesús A. De Loera, Serkan Hoşten, Robert Krone, Lily Silverstein, Average Behavior of Minimal Free Resolutions of Monomial Ideals, arXiv:1802.06537 [math.AC], 2018. (A001206)
118. de Luca, Aldo; de Luca, Alessandro, Pseudopalindrome closure operators in free monoids. Theoret. Comput. Sci. 362 (2006), no. 1-3, 282-300.
119. A. de Luca, A. de Luca, Sturmian words and the Stern sequence, arXiv preprint arXiv:1410.4085, 2014
120. Lucia De Luca, Gero Friesecke, Classification of particle numbers with unique Heitmann-Radin minimizer, arXiv:1701.07231 [math-ph], 2017.
121. Robert de Mello Koch, David Gossman, Laila Tribelhorn, Gauge Invariants, Correlators and Holography in Bosonic and Fermionic Tensor Models, arXiv:1707.01455 [hep-th], 2017.
122. de Mello Koch, R. & Ramgoolam, S., Interactions as intertwiners in 4D QFT, J. High Energ. Phys. (2016) 2016: 165. doi:10.1007/JHEP03(2016)165
123. Benjamin Hellouin de Menibus, Yvan Le Borgne, Asymptotic behaviour of the one-dimensional "rock-paper-scissors" cyclic cellular automaton, arXiv:1903.12622 [math.PR], 2019. (A000295)
124. A. de Mier, M. Noy, doi:10.1016/j.endm.2009.07.081 On the maximum number of cycles in outerplanar and series-parallel graphs, El. Notes Discr. Math. 43 (2009) 489-493
125. Liesbeth De Mol, The Proof Is in the Process: A Preamble for a Philosophy of Computer-Assisted Mathematics, in New Directions in the Philosophy of Science, The Philosophy of Science in a European Perspective, Volume 5, 2014, pp. 15-33.
126. Otto Augusto de Morais Costa and Victor Petrogradsky, Fractal just infinite nil Lie superalgebra of finite width, arXiv:1707.06614 [math.RA], 2017.
127. Pedro P. B. de Oliveira, Enrico Formenti, Kévin Perrot, Sara Riva, Eurico L. P. Ruivo, Non-maximal sensitivity to synchronism in periodic elementary cellular automata: exact asymptotic measures, arXiv:2004.07128 [cs.FL], 2020. (A005248)
128. Elie De Panafieu, Mohamed Lamine Lamali, Michael Wallner, Combinatorics of nondeterministic walks of the Dyck and Motzkin type, arXiv:1812.06650 [math.CO], 2018. (A151281)
129. J. Arias de Reyna, J. van de Lune, The question "How many 1's are needed?" revisited, arXiv preprint arXiv:1404.1850, 2014.
130. J. Arias de Reyna, J. van de Lune, Algorithms for determining integer complexity, arXiv preprint arXiv:1404.2183, 2014
131. David De Roure, P Willcox, DM Weigl, NUMBERS INTO NOTES: CAST YOUR MIND BACK 200 YEARS. Extended Abstracts for the Late-Breaking Demo Session of the 17th International Society for Music Information Retrieval Conference, 2016; PDF
132. Johan de Ruiyer, Counting Classes of Klondike Solitaire Configurations, Master's Thesis, Internal Report 2012-9, August 2012, Universiteit Leiden, Opleiding Informatica; http://www.liacs.nl/assets/Masterscripties/2012-09JohandeRuiter.pdf.
133. M. De Salvo, D. Fasino, D. Freni, G. Lo Faro, Fully simple semihypergroups, transitive digraphs, and sequence A000712, Journal of Algebra, Volume 415, 1 October 2014, Pages 65-87.
134. Mario De Salvo, Dario Fasino, Domenico Freni, Giovanni Lo Faro, A Family of 0-Simple Semihypergroups Related to Sequence A000070. Journal of Multiple-Valued Logic & Soft Computing . 2016, Vol. 27 Issue 5/6, pp. 553-572.
135. Mario De Salvo, Dario Fasino, Domenico Freni, Giovanni Lo Faro, Semihypergroups Obtained by Merging of 0-semigroups with Groups, Filomat (2018) Vol. 32, No. 12, 4177–4194. [PDF] (A000070, A000712)
136. Mario De Salvo, Domenico Freni, Giovanni Lo Faro, On Further Properties of Fully Zero-Simple Semihypergroups, Mediterranean Journal of Mathematics (2019) Vol. 16, No. 2, 48. doi:10.1007/s00009-019-1324-z
137. Alfredo De Santis, Anna Lisa Ferrara, Barbara Masucci, Cryptographic key assignment schemes for any access control policy, Information Processing Letters, Volume 92, Issue 4, 30 November 2004, Pages 199-205.
138. S. De Smedt, On Sloane's Sequence 1484, Saitama Math. J. 15 (1997), 9-13.
139. F. Javier de Vega, An extension of Furstenberg's theorem of the infinitude of primes, arXiv:2003.13378 [math.NT], 2020. (A000027, A000035, A000040, A000079, A000125, A000225, A000244, A001477, A002620, A004006, A005998, A023538, A025613, A032766, A033999, A036554, A049988, A058986, A068911, A105638, A212656, A230780) As we can see, the OEIS [12] has been fundamental in this part of the work.
140. F. Javier de Vega, A Complete Solution of the Partitions of a Number into Arithmetic Progressions, arXiv:2004.09505 [math.NT], 2020. (A049988)
141. Michael De Vlieger, Central zero-triangles in rotationally symmetrical XOR-Triangles. 2020. HTML
142. A. de Vries, Formal Languages: An Introduction, http://haegar.fh-swf.de/Seminare/Genome/Archiv/languages.pdf
143. Stefan De Wannemacker, Thomas Laffey, Robert Osburn, On a conjecture of Wilf, Journal of Combinatorial Theory, Series A, Volume 114, Issue 7, October 2007, Pages 1332-1349.
144. de Winter, J. C. F., (2013). Using the Student's t-test with extremely small sample sizes. Practical Assessment, Research & Evaluation, 18(10). Available online: http://pareonline.net/getvn.asp?v=18&n=10.
145. J. de Zoete, M. Sjerps, D. Lagnado, N. Fenton, Modelling crime linkage with Bayesian Networks, Sci. & Justice 55 (3) (2015) 209-217 doi:10.1016/j.scijus.2014.11.005
146. B. Dearden, J. Iiams, J. Metzger, A Function Related to the Rumor Sequence Conjecture, J. Int. Seq. 14 (2011) # 11.2.3
147. B. Dearden, J. Iiams, J. Metzger, Rumor Arrays, Journal of Integer Sequences, 16 (2013), #13.9.3.
148. Colin Defant, Postorder Preimages, arXiv preprint arXiv:1604.01723, 2016
149. Colin Defant, Some Poset Pattern-Avoidance Problems Posed by Yakoubov, arXiv preprint arXiv:1608.03951, 2016
150. Colin Defant, Stack-Sorting Preimages of Permutation Classes, arXiv:1809.03123 [math.CO], 2018. (A000957, A001181, A006318, A049124, A071356, A091156, A091894, A100754, A114593, A165543)
151. Colin Defant, Counting 3-Stack-Sortable Permutations, arXiv:1903.09138 [math.CO], 2019. (A001263, A091894, A134664, A324916)
152. Colin Defant, Catalan Intervals and Uniquely Sorted Permutations, arXiv:1904.02627 [math.CO], 2019. (A000108, A000260, A001003*, A001700*, A001764*, A005700, A006605*, A056010*, A063020*, A071725*, A109081*, A122368*, A127632, A180874, A279569*, A307346, asterisks conjectural connections with the subject of the paper).
153. Colin Defant, Enumeration of Stack-Sorting Preimages via a Decomposition Lemma, arXiv:1904.02829 [math.CO], 2019. (A071356)
154. Colin Defant, Motzkin Intervals and Valid Hook Configurations, arXiv:1904.10451 [math.CO], 2019. (A001006, A151347)
155. Colin Defant, Proofs of Conjectures about Pattern-Avoiding Linear Extensions, arXiv:1905.02309 [math.CO], 2019. (A002054, A072547, A098156, A116914, A127531, A134465)
156. Colin Defant, Troupes, Cumulants, and Stack-Sorting, arXiv:2004.11367 [math.CO], 2020. (A000629, A001006, A006318, A008292, A008303, A028246, A055151, A080635, A101280, A126120)
157. Colin Defant, James Propp, Quantifying Noninvertibility in Discrete Dynamical Systems, arXiv:2002.07144 [math.CO], 2020. (A000111, A092582, A217661)
158. D. Deford, Seating rearrangements on arbitrary graphs, 2013; PDF INVOLVE 7:6 (2014); doi:10.2140/involve.2014.7.787
159. Daryl Deford, Enumerating distinct chessboard tilings, (2014); Fib. Quart. 52 (5) (2014) 102.
160. P.-O. Dehaye, Combinatorics of the lower order terms in the moment conjectures: the Riemann zeta function, PDF
161. Paul-Olivier DEHAYE, Engineering discovery in mathematics, SNSF CONSOLIDATOR GRANT RESEARCH PROPOSAL, 2014; http://user.math.uzh.ch/dehaye/ERC/ResearchPlan_Dehaye.pdf
162. Patrick Dehornoy, Emilie Tesson, Garside combinatorics for Thompson's monoid F+ and a hybrid with the braid monoid B_oo+, arXiv:1803.02639 [math.GR], 2018. (A005773)
163. Isaac DeJager, Madeleine Naquin, Frank Seidl, Colored Motzkin Paths of Higher Order, VERUM 2019. PDF (A000079, A000244, A000302, A000400, A000984, A001005, A001405, A002212, A002293, A002426, A005572, A005573, A005773, A006013, A007317, A023053, A026375, A026378, A026641, A033321, A033543, A036765, A047099, A054341, A059738, A064613, A071879, A076227, A081671, A089354, A098409, A098746, A117641, A121545, A122898, A126120, A126568, A126931, A126932, A126952, A127358, A127359, A127360, A133158, A141223, A159772, A185132, A227081, A303730)
164. Italo J. Dejter, A numeral system for the middle levels, Preprint 2014; http://home.coqui.net/dejterij/anumeral.pdf.
165. I. Dejter, <a href="http://home.coqui.net/dejterij/a_string.pdf">On a system of numeration applicable to the middle two levels of the Boolean lattice</a>
166. Italo J. Dejter, Dihedral-symmetry middle-levels problem via a Catalan system of numeration, preprint, 2015. (A000108, A239903, A007623, A009766)
167. Italo J. Dejter, Ordering the levels Lk and Lk+1 of B2k+1, preprint, 2017.
168. Italo J. Dejter, The role of restricted growth strings in the two middle levels of the Boolean lattice B2k+1, University of Puerto Rico, 2018. PDF (A000108, A009766, A076050, A239903)
169. Italo J. Dejter, Reinterpreting Mütze's Theorem via Natural Enumeration of Ordered Rooted Trees, arXiv:1911.02100 [math.CO], 2019. (A000108, A009766, A076050, A239903)
170. Italo J. Dejter and Oscar Tomaiconza, Nonexistence of Efficient Dominating Sets in the Cayley Graphs Generated by Transposition Trees of Diameter 3, arXiv:1703.06540 [math.CO], 2017.
171. F. M. Dekking, Pure morphic sequences and their standard forms, arXiv preprint arXiv:1509.00260, 2015. Appeared in J. Integer Sequences, Vol. 19, with title "Morphisms, Symbolic Sequences, and Their Standard Forms".
172. F. Michel Dekking, The Frobenius problem for homomorphic embeddings of languages into the integers, arXiv:1712.03345 [math.CO], 2017. (A276885, A276886)
173. F. Michel Dekking, Substitution invariant Sturmian words and binary trees, Integers, 18A (2018), #A7. ["I had an extremely happy feeling when I found out, using OEIS, that my compositions of Sturmian morphisms were connected to Johannes Kepler’s tree from 1619!" - Michel Dekking to N. J. A. Sloane, Feb 02, 2020]
174. F. Michel Dekking, Base phi representations and golden mean beta-expansions, arXiv:1906.08437 [math.NT], 2019. (A054770, A214971)
175. F. M. Dekking, <a href="https://arxiv.org/abs/2001.08915">Permutations of N generated by left-right filling algorithms</a>, arXiv:2001.08915 [math.CO], 2020.
176. F. M. Dekking, Permutations of N generated by left-right filling algorithms, arXiv:2001.08915 [math.CO], 2020. (A026136, A026137, A026138, A026139, A026141, A026142, A026166, A026172, A026173, A026174, A026175, A026176, A026177, A026182, A026184, A026186, A026188, A026208, A026212, A026206, A026210, A026215, A026222, A065190, A116178, A189637)
177. Michel Dekking, Points of increase of the sum of digits function of the base phi expansion, arXiv:2003.14125 [math.CO], 2020. (A007895, A026274)
178. F. Michel Dekking, M Keane, On the conjugacy class of the Fibonacci dynamical system, arXiv preprint arXiv:1608.04487, 2016
179. F. Michel Dekking, Jeffrey Shallit, and N. J. A. Sloane, <a href="https://www.combinatorics.org/ojs/index.php/eljc/article/view/v27i1p52/8039">Queens in exile: non-attacking queens on infinite chess boards</a>, Electronic J. Combin., 27:1 (2020), #P1.52.
180. A. Del Lungo, E. Duchi, A. Frosini, S. Rinaldi, Enumeration of convex polyominoes using the ECO method Disc. Math. Theo. Comp. Sci. AB (2003) 103-116
181. Del Lungo, A.; Duchi, E.; Frosini, A.; Rinaldi, S. On the generation and enumeration of some classes of convex polyominoes. Electron. J. Combin. 11 (2004), no. 1, Research Paper 57, 45 pp.
182. A. Del Lungo, M. Mirolli, R. Pinzani, S. Rinaldi, A bijection for directed convex polyominoes, Discrete Mathematics and Theoretical Computer Science, Discrete Models: Combinatorics, Computation, Geometry, ISSN 1365-8050 (2001) 133-144.
183. Del Lungo, Alberto; Nivat, Maurice; Pinzani, Renzo; Rinaldi, Simone, A bijection for the total area of parallelogram polyominoes. Discrete Appl. Math. 144 (2004), no. 3, 291-302.
184. J.-P. Delahaye, Inventiones à suivre, Pour la Science, No. 353, March 2007.
185. J.-P. Delahaye, L'arithmetique geometrique, Pour la Science, No. 360, October 2007.
186. Jean-Paul Delahaye, Mille collections de nombres, Pour la Science N° 379 – mai 2009, pp. 88-93.
187. Jean-Paul Delahaye, La persistance des nombres, Pour la Science, July 5, 2013, pp. 15-24.
188. Jean-Paul DELAHAYE, Une seule intelligence?, Pour la Science, No. 446, Dec. 2014, pp. 76-77.
189. Jean-Paul Delahaye, Inventions Mathématiques, Jouer avec l'arithmétique et la géométrie, Published by Pour La Science, 06/06/2014, Bibliotheque Scientifique, ISBN : 2842451287, EAN : 978-2842451288
190. Jean-Paul Delahaye, Les secrets du nombre 42, Pour la Science, #508, February 2020, pp. 80-85.
191. E. Delaygue, Arithmetic properties of Apery-like numbers, arXiv preprint arXiv:1310.4131, 2013
192. Vincent Delecroix, Elise Goujard, Peter Zograf, Anton Zorich, Enumeration of meanders and Masur-Veech volumes, arXiv:1705.05190 [math.GT], 2017.
193. Marc Deleglise and Jean-Louis Nicolas, Maximal product of primes whose sum is bounded, Arxiv preprint arXiv:1207.0603, 2012
194. M. Deléglise, J.-L. Nicolas, On the Largest Product of Primes with Bounded Sum, Journal of Integer Sequences, 18 (2015), #15.2.8.
195. Marc Deléglise, Jean-Louis Nicolas, The Landau function and the Riemann hypothesis, Univ. Lyon (France, 2019). Abstract (A000793, A159685)
196. M. Delest, Polyominoes and animals : some recent results, J. of Math. Chem., 8 (1991), 3-18.
197. M. Delest, Enumeration of polyominoes using Macsyma, Theoretical Computer Science, Volume 79, Issue 1, 21 February 1991, Pages 209-226.
198. M. Delest, Combinatorics, information vizualisation and algebraic languages, Invited talk, EWM'99.
199. M. P. Delest, J. M. Fedou, Enumeration of skew Ferrers diagrams, Discrete Mathematics, Volume 112, Issues 1-3, 25 March 1993, Pages 65-79.
200. Gesualdo Delfino and Jacopo Viti, Potts q-color field theory and scaling random cluster model, Arxiv preprint arXiv:1104.4323, 2011.
201. A. Delgado, Daniel Calgiardi, Michael L. Gargano, Marty Lewinter, William Widulski, Even-Pancyclic subgraphs of meshes, (2008)
202. Jorge Delgado, Héctor Orera, Juan Manuel Peña, Accurate computations with Laguerre matrices, Numerical Linear Algebra with Applications (2019) Vol. 26, Issue 1. doi:10.1002/nla.2217
203. O. Delgado-Friedrichs and M. O'Keeffe, Edge-transitive lattice nets, Acta Cryst. A, A65 (2009), 360-363.
204. Giacomo Della Riccia, "Converting Between Generalized Bell, Lah, Stirling and Tanh Numbers", J. Integer Sequences, Volume 9, 2006, Article 06.3.5.
205. Robert Deloin, Proof of Bunyakovsky's Conjecture, viXra, 2016.
206. Delorme, Charles, Plane trivalent trees and their patterns. Cent. Eur. J. Math. 8 (2010), no. 6, 1041-1047.
207. C. Delorme, Sequence of maximal distance codes in graphs or other metric spaces, Electronic Journal of Graph Theory and Applications 1 (2) (2013), 118-124
208. Charles Delorme and Guillermo Pineda-Villavicencio, Quadratic Form Representations via Generalized Continuants, Journal of Integer Sequences, Vol. 18 (2015), Article 15.6.4. (A003655, A014602)
209. F. Delplace, Apéry's Constant Calculation and Prime Numbers Distributions: A Matrix Approach, International Journal of Scientific Engineering and Applied Science (IJSEAS) – Volume‐3, Issue‐10, October 2017; http://ijseas.com/volume3/v3i10/ijseas20171007.pdf
210. Demaine, Erik D.; Demaine, Martin L.; Minsky, Yair N.; Mitchell, Joseph S. B.; Rivest, Ronald L.; PÇ~NtraÅ~_cu, Mihai Picture-hanging puzzles. Theory Comput. Syst. 54 (2014), no. 4, 531-550.
211. Simon Demers, Taylor's Law Holds for Finite OEIS Integer Sequences and Binomial Coefficients, American Statistician, online: 19 Jan 2018; https://doi.org/10.1080/00031305.2017.1422439; https://www.tandfonline.com/doi/abs/10.1080/00031305.2017.1422439
212. O. Demetz, D. Hafner, J. Weickert, Morphologically Invariant Matching of Structures with the Complete Rank Transform, International Journal of Computer Vision, July 2015, Volume 113, Issue 3, pp 220-232
213. B. Demoen and P.-L. Nguyen, The classification of graphs with a redundant inequality, Report CW633, Dept. of Computer Sci., Univ. Leuven, 2013; http://www.cs.kuleuven.be/publicaties/rapporten/cw/CW633.pdf
214. Demongeot, Jacques; Noual, Mathilde; Sené, Sylvain Combinatorics of Boolean automata circuits dynamics. Discrete Appl. Math. 160 (2012), no. 4-5, 398-415.
215. Eva Y.P. Deng, Toufik Mansour, Three Hoppy path problems and ternary paths, Discrete Applied Mathematics, Volume 156, Issue 5, 1 March 2008, Pages 770-779.
216. Eva Y.P. Deng, Wei-Jun Yan, Some identities on the Catalan, Motzkin and Schroder numbers, Discrete Applied Mathematics, Volume 156, Issue 14, 28 July 2008, Pages 2781-2789.
217. A. Denise and R. Simion, Two combinatorial statistics on Dyck paths, Discrete Math. 137 (1995), 155-176.
218. A. Denise, M. Vasconcellos and D. J. A. Welsh, The random planar graph, Congressus Numerantium 113 (1996) 61-79.
219. Z. Deniz, Topology of acyclic complexes of tournaments and coloring, Applicable Algebra in Engineering, Communication, March 2015, Volume 26, Issue 1, pp 213-226.
220. Melissa Dennison, On Properties of the General Bow Sequence, J. Int. Seq., Vol. 22 (2019), Article 19.2.7. HTML (A000045, A002487, A106345, A281185)
221. Hugh Denoncourt, Ordinal pattern probabilities for symmetric random walks, arXiv:1907.07172 [math.CO], 2019. (A003274)
222. H Denoncourt, DC Ernst, D Story, On the number of commutation classes of the longest element in the symmetric group, arXiv:1602.08328, 2016.
223. S. C. Dent and J. Siemons, On a conjecture of Foulkes. J. Algebra 226 (2000), no. 1, 236-249.
224. D. Denton, Methods of computing deque sortable permutations given complete and incomplete information, Arxiv preprint arXiv:1208.1532, 2012
225. Tom Denton, Algebraic and Affine Pattern Avoidance, arXiv preprint arXiv:1303.3767, 2013
226. Denton, Tom; Hivert, Florent; Schilling, Anne; Thiéry, Nicolas M. On the representation theory of finite J-trivial monoids. Sém. Lothar. Combin. 64 (2010/11), Art. B64d, 44 pp.
227. Anand Deopurkar, Eduard Duryev, Anand Patel, Ramification divisors of general projections, arXiv:1901.01513 [math.AG], 2019. (A001181)
228. Josh Deprez, Fair amenability for semigroups, arXiv preprint arXiv:1310.5589, 2013
229. Leo Depuydt, The Prime Sequence: Demonstrably Highly Organized While Also Opaque and Incomputable-With Remarks on Riemann's Hypothesis, Partition, Goldbach's Conjecture, ..., Advances in Pure Mathematics, 4 (No. 8, 2014), 400-466.
230. Gregory Derfel, On the asymptotic behaviour of the zeros of the solutions of the pantograph equation, Dynamics, Equations and Applications, Session D33 (Kraków, Poland 2019). PDF Abstract (A308351, A308352, A308354, A308362)
231. Derksen, Harm; and Fink, Alex; Valuative invariants for polymatroids. Adv. Math. 225 (2010), no. 4, 1840-1892.
232. Nachum Dershowitz, Touchard’s Drunkard, Journal of Integer Sequences, Vol. 20 (2017), #17.1.5.
233. Nachum Dershowitz, Between Broadway and the Hudson: A Bijection of Corridor Paths, arXiv:2006.06516 [math.CO], 2020. (A000244, A003462, A005021, A006053, A007051, A025192, A052975, A060557, A080937, A094790)
234. Nachum Dershowitz, Mitchell A. Harris and Guan-Shieng Huang, Enumeration Problems Related to Ground Horn Theories (2006), arXiv:cs/0610054.
235. Nachum Dershowitz, Shmuel Zaks, Enumerations of ordered trees, Discrete Mathematics, Volume 31, Issue 1, 1980, Pages 9-28.
236. M. A. Deryagina, On the enumeration of hypermaps which are self-equivalent with respect to reversing the colors of vertices, Preprint 2016; ftp://ftp.pdmi.ras.ru/pub/publicat/znsl/v446/p031.pdf
237. M. A. Deryagina and A. D. Mednykh, On the enumeration of circular maps with given number of edges, Siberian Mathematical Journal, 54, No. 6, 2013, 624-639.
238. Stephen DeSalvo, Exact Sampling Algorithms for Latin Squares and Sudoku Matrices via Probabilistic Divide-and-Conquer, Algorithmica (2016). doi:10.1007/s00453-016-0223-y
239. Derek Desantis, Rebecca Field, Wesley Hough, Brant Jones, Rebecca Meissen, and Jacob Ziefle, Permutation Pattern Avoidance and the Catalan Triangle, Missouri J. Math. Sci. Volume 25, Issue 1 (2013), 50-60.
240. Jean-Marc Deshouillers, A footnote to the least non zero digit of n! in base 12, Uniform Distribution Theory 7 (2012), no. 1, 71-73; http://www.boku.ac.at/math/udt/vol07/no1/03Desh30-11.pdf.
241. Jean-Marc Deshouillers, Yet Another Footnote to the Least Non Zero Digit of n! in Base 12, Unif. Distrib. Theory 11 (2016), no. 2, 163-167. doi:10.1515/UDT-2016-0018
242. Wyatt J. Desormeaux, Teresa W. Haynes, Michael A. Henning, Restrained domination in self-complementary graphs, Preprint, Discussiones Mathematicae Graph Theory (2019), 1–13. doi:10.7151/dmgt.2222 (A085759)
243. Jonathan Detchart, Jérôme Lacan, Fast Xor-based Erasure Coding based on Polynomial Ring Transforms, arXiv:1701.07731, 2017. Official publication: doi: 10.1109/ISIT.2017.8006599
244. Jonathan Detchart, Jérôme Lacan, Improving the coding speed of erasure codes with polynomial ring transforms, arXiv:1709.00178 [cs.IT], 2017.
245. Duane W. DeTemple and William Webb, Combinatorial Reasoning: An Introduction to the Art of Counting, Wiley, 2014.
246. Jeremie Detrey, PJ Spaenlehauer, P Zimmermann, Computing the rho constant, Preprint 2016, https://members.loria.fr/PZimmermann/papers/rho.pdf
247. Chris Deugau and Frank Ruskey, Complete k-ary trees and generalized meta-Fibonacci sequences, in Fourth Colloquium on Mathematics and Computer Science, DMTCS Proc. AG, 2006, 203-214; http://www.dmtcs.org/dmtcs-ojs/index.php/proceedings/article/viewFile/570/1690
248. E. Deutsch, Dyck path enumeration, Discrete Math., 204 (1999), 167-202.
249. E. Deutsch, Enumerating symmetric directed convex polyominoes, Discrete Math., 280 (2004), 225-231.
250. E. Deutsch, Ordered trees with prescribed root degrees, node degrees and branch lengths. Discrete Math. 282 (2004), no. 1-3, 89-94.
251. E. Deutsch, Tree statistics from Matula numbers, Arxiv preprint arXiv:1111.4288, 2011
252. E. Deutsch, Rooted tree statistics from Matula numbers, Discrete Applied Mathematics, Volume 160, Issue 15, October 2012, Pages 2314-2322.
253. E. Deutsch and S. Elizalde, Cycle Up-down Permutations, arXiv:0909.5199. 2009.
254. Deutsch, Emeric; Elizalde, Sergi; doi:10.1007/s00026-012-0129-6 Restricted simsun permutations. Ann. Comb. 16, No. 2, 253-269 (2012).
255. Emeric Deutsch, S Elizalde, Statistics on bargraphs viewed as cornerless Motzkin paths, arXiv preprint arXiv:1609.00088, 2016 and Discr. Appl. Math. 221 (2017) 54-66 doi:10.1016/j.dam.2016.12.026
256. Emeric Deutsch and Sergi Elizalde, A bijection between bargraphs and Dyck paths, arXiv:1705.05984 [math.CO], 2017.
257. E. Deutsch, S. Feretic and M. Noy, Diagonally convex directed polyominoes and even trees: a bijection and related issues, Discrete Mathematics, 256 (2002), 645-654.
258. Deutsch, Emeric; Ferrari, Luca; and Rinaldi, Simone, doi:10.1016/j.aam.2004.05.002 Production matrices, Adv. in Appl. Math. 34 (2005), no. 1, 101-122.
259. Deutsch, Emeric; Ferrari, Luca; Rinaldi, Simone, Production matrices and riordan arrays, Ann. Comb. 13, No. 1, 65-85 (2009). doi:10.1007/s00026-009-0013-1
260. E. Deutsch, E. Munarini, S. Rinaldi, Skew Dyck paths, area and superdiagonal bargraphs, J. Stat. Plan. Infer. 140 (6) (2010) 1550-1562 doi:10.1016/j.jspi.2009.12.013
261. Emeric Deutsch, Emanuele Munarini, and Simone Rinaldi, doi:10.1016/j.jspi.2010.01.015 Skew Dyck paths, J. Stat. Plan. Infer. 140 (8) (2010) 2191-2203
262. E. Deutsch and H. Prodinger, A bijection between directed column-convex polyominoes and ordered trees of height at most four, GASCom 2001, Siena, pp. 18-20, Nov. 2001.
263. Emeric Deutsch and Helmut Prodinger, A bijection between directed column-convex polyominoes and ordered trees of height at most three. Random generation of combinatorial objects and bijective combinatorics. Theoret. Comput. Sci. 307 (2003), no. 2, 319-325.
264. E. Deutsch and B. E. Sagan, Congruences for Catalan and Motzkin numbers and related sequences, J. Number Theory, 117 (2006), 191-215.
265. E. Deutsch and L. Shapiro, A survey of the Fine numbers, Discrete Math., 241 (2001), 241-265. "The connection between these two appearances would probably not have occurred without Sloane's Handbook of Integer Sequences ..."
266. E. Deutsch and L. Shapiro, A bijection between ordered trees and 2-Motzkin paths and its many consequences, Discrete Math., 256 (2002), 655-670.
267. Omur Deveci, Zafer Adiguzel, Yesim Akuzum, On the Jacobsthal-circulant-Hurwitz numbers, Maejo International Journal of Science and Technology, Chiang Mai (2020) Vol. 14, Iss. 1, 56-67. PDF
268. Ömür Deveci, Zafer Adıgüzel, Taha Doğan, On the Generalized Fibonacci-circulant-Hurwitz numbers, Notes on Number Theory and Discrete Mathematics (2020) Vol. 26, No. 1, 179-190. doi:10.7546/nntdm.2020.26.1.179-190 (A000045, A000073, A000078, A001591, A001622, A046698, A058265, A086088, A118745)
269. O. Deveci, Y. Akuzum, E. Karaduman, O. Erdag, The Cyclic Groups via Bezout Matrices, Journal of Mathematics Research, Vol. 7, No. 2; 2015, pp. 34-41.
270. O. Deveci and E. Karaduman, On the Periods of Some Figurate Numbers, Selcuk J. Appl. Math. Vol. 12. No. 2. pp. 71-80, 2011; http://www.sumam.selcuk.edu.tr/vol%2012-2/12-2-7/sj10-42.pdf
271. A. Sangeetha Devi, MM Shanmugapriya, Application of 2-Dominator Coloring in Graphs Using MATLAB, Journal of Computer and Mathematical Sciences, Vol. 7(4), 168-174, April 2016
272. L. DeVille, S. Dhople, A. Dominguez-Garcia, J. Zhang, Stochastic hybrid systems in equilibrium: moment closure, finite-time blowup, and exact solutions, arXiv preprint arXiv:1411.6600, 2014
273. O. Devillers, Vertex removal in two-dimensional Delauney triangulation..., Comp. Geom. 44 (2011) 169 doi:doi:10.1016/j.comgeo.2010.10.001
274. J. Devillet, Bisymmetric and quasitrivial operations: characterizations and enumertions, arXiv:1712.07856, 2017 (A000142, A000225, A002627, A131577, A292932, A293005, A296943, A296944, A296953, A296954, A296964, A296965)
275. Jimmy Devillet, On the single-peakedness property, International summer school "Preferences, decisions and games" (Sorbonne Université, Paris, 2019). Abstract (A048739, A307005)
276. Jimmy Devillet, Miguel Couceiro, Characterizations and enumerations of classes of quasitrivial n-ary semigroups, 98th Workshop on General Algebra (AAA98, Dresden, Germany 2019). Abstract (A292932, A308352, A308354, A308362)
277. Jimmy Devillet, Jean-Luc Marichal, Bruno Teheux, Classifications of quasitrivial semigroups, arXiv:1811.11113 [math.RA], 2018. (A292932)
278. Jimmy Devillet, Bruno Teheux, Associative, idempotent, symmetric, and order-preserving operations on chains. arXiv:1805.11936 [math.RA], 2018. (A000108, A001190, A006014)
279. Jimmy Devillet, Gergely Kiss, Characterizations of biselective operations, arXiv:1806.02073 [math.RA], 2018. (A000005, A121860)
280. P. Devlin, Integer Subsets with High Volume and Low Perimeter, Arxiv preprint arXiv:1202.1331, 2012
281. Matt DeVos, Adam Dyck, Jonathan Jedwab, Samuel Simon, Which graphs occur as γ-graphs?, arXiv:1810.01583 [math.CO], 2018. (A001349) See also, Graphs and Combinatorics (2020) Vol. 36, 1219–1246. doi:10.1007/s00373-020-02174-9 (A001349)
282. Karel Devriendt, Renaud Lambiotte, Piet Van Mieghem, Constructing Laplacian matrices with Soules vectors: inverse eigenvalue problem and applications, arXiv:1909.11282 [physics.soc-ph], 2019. (A000111)
283. T. DeVries, A case study in bivariate singularity analysis, Contemp. Math 529 (2010) 61.
284. Mainendra Kumar Dewangan, Subhra Datta, Effective permeability tensor of confined flows with wall grooves of arbitrary shape, J. of Fluid Mechanics (2020) Vol. 891. doi:10.1017/jfm.2020.134 (A002117)
285. Antoine Deza, George Manoussakis, Shmuel Onn, Primitive Zonotopes, Discrete & Computational Geometry, 2017, p. 1-13. doi:10.1007/s00454-017-9873-z
286. Deza, Elena; Deza, Michel Marie. Figurate numbers World Scientific (2012).
287. Deza, Michel; Deza, Elena Cones of partial metrics. Contrib. Discrete Math. 6 (2011), no. 1, 26-47.
288. Michel Deza, Roman Shklyar, Enumeration of hamiltonian cycles in 6-cube, arXiv:1003.4391 [cs.DM]
289. Jean Dezert, Florentin Smarandache, On the Generation of Hyper-powersets for the DSmT (2003), arXiv:math/0309431.
290. Rahul Dhal, Gerardo Lafferriere, John Caughman, Towards a complete characterization of vulnerability of networked synchronization processes, 2016 IEEE 55th Conference on Decision and Control (CDC). doi:10.1109/CDC.2016.7799066
291. A. Di Crescenzo, B. Martinucci, A. Rhandi, A linear birth-death process on a star graph and its diffusion approximation, arXiv preprint arXiv:1405.4312, 2014
292. P. Di Francesco, O. Golinelli, E. Guitter, Meanders: a direct enumeration approach, Nuclear Physics B, Volume 482, Issue 3, 30 December 1996, Pages 497-535.
293. P. Di Francesco, O. Golinelli and E. Guitter, arXiv:hep-th/9506030 Meander, folding and arch statistics.]; Mathematical and Computer Modelling, Volume 26, Issues 8-10, October-November 1997, Pages 97-147.
294. Philippe Di Francesco, Emmanuel Guitter, Twenty-Vertex model with domain wall boundaries and domino tilings, arXiv:1905.12387 [math.CO], 2019.
295. Di Francesco, Philippe; Zinn-Justin, Paul; Zuber, Jean-Bernard, Determinant formulae for some tiling problems and application to fully packed loops. Ann. Inst. Fourier (Grenoble) 55 (2005), no. 6, 2025-2050.
296. Antonio J. Di Scala, Nadir Murru, Carlo Sanna, Lucas pseudoprimes and the Pell conic, arXiv:2001.00353 [math.NT], 2020. (A000129, A099011)
297. Persi Diaconis, Probabilizing Fibonacci Numbers, 2017.
298. P. Diaconis, S. Holmes, S. Janson, Threshold graph limits and random threshold graphs, Internet Math. 5 (3) (2008) 267-320 doi:10.1080/15427951.2008.10129166
299. M. R. Diamond, Multiplicative persistence base 10: some new null results, http://www.markdiamond.com.au/download/joous-3-1-1.pdf.
300. J. A. Dias da Silva and P. J. Freitas, Counting Spectral Radii of Matrices with Positive Entries, arXiv preprint arXiv:1305.1139, 2013
301. Alexander Diaz-Lopez, Pamela E. Harris, Erik Insko, Darleen Perez-Lavin, Peaks Sets of Classical Coxeter Groups, preprint arXiv:1505.04479, 2015. [A000330, A007051, A122983]
302. R. Dickau, Unlabeled Stamp Foldings
303. M Diepenbroek, M Maus, A Stoll, Pattern Avoidance in Reverse Double Lists, Preprint 2015, http://www.valpo.edu/mathematics-statistics/files/2014/09/Pudwell2015.pdf
304. S. N. Diggavi, N. J. A. Sloane and V. A. Vaishampayan, Asymmetric Multiple Description Lattice Vector Quantizers, IEEE Trans. on Information Theory, vol 48, no 1, pp 174-191, January 2002.
305. Ayhan Dil, Khristo N. Boyadzhiev, Ilham A. Aliev, On values of the Riemann zeta function at positive integers, Lithuanian Mathematical Journal (2019). doi:10.1007/s10986-019-09456-7
306. A. Dil, Veli Kurt, Investigating Geometric and Exponential Polynomials with Euler-Seidel Matrices, J. Int. Seq. 14 (2011) # 11.4.6
307. Ayhan Dil and Veli Kurt, Polynomials related to harmonic numbers and evaluation of harmonic number series I, INTEGERS, 12 (2012), #A38.
308. Ayhan Dil, Veli Kurt and Mehmet Cenkci, "Algorithms for Bernoulli and Related Polynomials", J. Integer Sequences, Volume 10, 2007, Article 07.5.4.
309. Ayhan Dil, Erkan Muniroğlu, Applications of derivative and difference operators on some sequences, arXiv:1910.01876 [math.NT], 2019.
310. Karl Dilcher, "Congruences for a Class of Alternating Lacunary Sums of Binomial Coefficients", J. Integer Sequences, Volume 10, 2007, Article 07.10.1.
311. K. Dilcher, L. Ericksen, Reducibility and irreducibility of Stern (0, 1)-polynomials, COMMUNICATIONS IN MATHEMATICS, VOLUME 22/2014 , pp. 77-102.
312. K. Dilcher and L. Ericksen, Hyperbinary expansions and Stern polynomials, Elec. J. Combin, 22, 2015, #P2.24.
313. Karl Dilcher, Larry Ericksen, The Polynomials of Mahler and Roots of Unity, The American Mathematical Monthly, Vol. 122, No. 04 (April 2015), pp. 338-353. [A49094,] "We encounter the amazingly interesting and helpful on-line mathematical tool OEIS ..."
314. Karl Dilcher, Larry Ericksen, Hyperbinary Expansions and Stern Polynomials, Electronic Journal of Combinatorics, Volume 22, Issue 2 (2015), Paper #P2.24. [A002487, A000120, A005836, A000695, A033042]
315. K Dilcher, L Ericksen, Factors and irreducibility of generalized Stern polynomials, Integers, #A50 15 (2015)
316. Karl Dilcher and Larry Ericksen. Continued fractions and Stern polynomials. Ramanujan Journal (2017). doi:10.1007/s11139-016-9864-3.
317. Karl Dilcher, Larry Ericksen, Polynomials Characterizing Hyper b-ary Representations, J. Int. Seq., Vol. 21 (2018), Article 18.4.3. HTML (A002487, A054390)
318. Karl Dilcher, Larry Ericksen, Polynomial Analogues of Restricted b-ary Partition Functions, J. Int. Seq., Vol. 22 (2019), Article 19.3.2. HTML (A002487, A018819)
319. K. Dilcher, K. B. Stolarsky, Stern polynomials and double-limit continued fractions. Acta Arithmetica 140 (2009), 119-134 doi:10.4064/aa140-2-2
320. K. Dilcher, K. B. Stolarsky, Nonlinear recurrences related to Chebyshev polynomials, The Ramanujan Journal, 2014, Online Oct. 2014, pp. 1-23.
321. Karl Dilcher, Armin Straub, Christophe Vignat, Identities for Bernoulli polynomials related to multiple Tornheim zeta functions, arXiv:1903.11759 [math.NT], 2019. (A085614, A091527)
322. Karl Dilcher, Hayley Tomkins, Square classes and divisibility properties of Stern polynomials, Integers (2018) 18, Article #A29. Abstract (A001045, A048573)
323. Karl Dilcher, Maciej Ulas, Arithmetic properties of polynomial solutions of the Diophantine equation P(x)xn+1+Q(x)(x+1)n+1 = 1, arXiv:1909.11222 [math.NT], 2019. (A000295, A026641, A046899, A178792)
324. Karl Dilcher, Christophe Vignat, Infinite products involving Dirichlet characters and cyclotomic polynomials, arXiv:1801.09160 [math.NT], 2018. (A066840) "It should be mentioned that all 5 identities in Corollary 6 were first found experimentally by using MAPLE and the OEIS."
325. Selma Dilek, Bell Numbers, 2017.
326. D. Scott Dillery, Modeling with Data and Technology, Second Edition, 2011; http://simplex.lindsey.edu/~mdt/mdtText.pdf.
327. D. Dimitrov, Efficient computation of trees with minimal atom-bond connectivity index, arXiv preprint arXiv:1305.1155, 2013 and Appl. Math. Comput. 224 (2013) 663-670 doi:10.1016/j.amc.2013.08.089
328. Darko Dimitrov, Tomáš Dvořák, Petr Gregor, Riste Škrekovski, Linear time construction of a compressed Gray code. European J. Combin. 34 (2013), no. 1, 69-81. doi:10.1016/j.ejc.2012.07.015
329. Stoyan Dimitrov, On permutation patterns with constrained gap sizes, arXiv:2002.12322 [math.CO], 2020. (A049124, A071717, A071721, A071726, A109262, A119370) POPs were studied in the context of permutations, words and compositions in a series of papers including a recent work of Gao and Kitaev where a systematic search of connections between sequences in the Online Encyclopedia of Integer Sequences (OEIS) and permutations avoiding POPs of size 4 and 5 was conducted.
330. Yun Ding and Rosena R. X. Du, Counting Humps in Motzkin paths, Arxiv preprint arXiv:1109.2661, 2011. Discrete Applied Mathematics, Volume 160 Issue 1-2, January, 2012; doi:10.1016/j.dam.2011.08.018
331. Ziqian Ding, Dihedral Symmetries of Non-crossing Partition Lattices, Ph D Dissertation, University of Miami August 2016; http://scholarlyrepository.miami.edu/cgi/viewcontent.cgi?article=2698&context=oa_dissertation
332. An Vinh Nguyen Dinh, Nhien Pham Hoang Bao, Terrillon Jean-Christophe, Hiroyuki Iida, Reaper Tournament System, 2018. PDF (A0003071)
333. An Vinh Nguyen Dinh, Nhien Pham Hoang Bao, Mohd Nor Akmal Khalid, Hiroyuki Iida, Simulating competitiveness and precision in a tournament structure: a reaper tournament system, Int'l J. of Information Technology (2020) Vol. 12, 1–18. doi:10.1007/s41870-019-00397-5 (A003071)
334. Felipe B. Diniz, About a new family of sequences, arXiv preprint arXiv:1607.06082, 2016
335. Diophante.fr, <a href="http://www.diophante.fr/accueil">LES RECREATIONS MATHEMATIQUES</a>, PLUS DE 2000 RECREATIONS ET PROBLEMES MATHEMATIQUES.
336. Daniel de França Diniz Rocha, Long term stability and the meaning of life, (2019). PDF (A100000)
337. Oboifeng Dira, A Note on Composition and Recursion, Southeast Asian Bulletin of Mathematics (2017), Vol. 41, Issue 6, 849-853.
338. F. Disanto, Andre' permutations of the second kind associated to strictly binary increasing trees and left to right minima in their sub-permutations, Arxiv preprint arXiv:1202.1139, 2012
339. F. Disanto, The size of the biggest Caterpillar subtree in binary rooted planar trees, Arxiv preprint arXiv:1202.5668, 2012
340. Filippo Disanto, Unbalanced subtrees in binary rooted ordered and un-ordered trees, Seminaire Lotharingien de Combinatoire, 68 (2013), Article B68b.
341. F. Disanto, Some Statistics on the Hypercubes of Catalan Permutations, J. Int. Seq. 18 (2015) # 15.2.2
342. Filippo Disanto, Luca Ferrari, Renzo Pinzani et al., Catalan numbers and relations (2009) arXiv:0901.3509 and under the title "Catalan pairs: a relational-theoretical approach to Catalan numbers" in Adv. Appl. Math. 45 (2010) 505-517 doi:10.1016/j.aam.2010.02.004
343. Disanto, Filippo; Frosini, Andrea; Pinzani, Renzo; Rinaldi, Simone, A closed formula for the number of convex permutominoes. Electron. J. Combin. 14 (2007), no. 1, Research Paper 57, 17 pp.
344. Disanto, Filippo; Frosini, Andrea; Rinaldi, Simone Square involutions. J. Integer Seq. 14 (2011), no. 3, Article 11.3.5, 15 pp.
345. Filippo Disanto, Emanuele Munarini, Local height in weighted Dyck models of random walks and the variability of the number of coalescent histories for caterpillar-shaped gene trees and species trees, SN Applied Sciences (2019), 1:578. doi:10.1007/s42452-019-0564-7 (A000364)
346. F. Disanto, E. Pergola, R. Pinzani and S. Rinaldi, Generation and Enumeration of Some Classes of Interval Orders, Order, July 2012; doi:10.1007/s11083-012-9269-x.
347. F. Disanto and S. Rinaldi, Symmetric convex permutominoes and involutions, PU. M. A., Vol. 22 (2011), No. 1, pp. 39-60; http://www.mat.unisi.it/newsito/puma/public_html/22_1/2-disanto_rinaldi.pdf
348. Filippo Disanto and Thomas Wiehe, Some combinatorial problems on binary rooted trees occurring in population genetics, Arxiv preprint arXiv:1112.1295, 2011
349. F. Disanto and T. Wiehe, Some instances of a sub-permutation problem on pattern avoiding permutations, arXiv preprint arXiv:1210.6908, 2012
350. F. Disanto and T. Wiehe, Exact enumeration of cherries and pitchforks in ranked trees under the coalescent model, Mathematical Biosciences 242 (2) (2013) 195-200 doi:10.1016/j.mbs.2013.01.010
351. F. Disanto and T. Wiehe, On the sub-permutations of pattern avoiding permutations, Discrete Math., 337 *2014), 127-141.
352. Andreas Distler and Tom Kelsey, The Monoids of Order Eight and Nine, in Intelligent Computer Mathematics, Lecture Notes in Computer Science, Volume 5144/2008, Springer-Verlag.
353. Andreas Distler, Tom Kelsey, The monoids of order eight, nine and ten, Ann. Math. Artif. Intelligence 56 (2009) 3-21 doi:10.1007/s10472-009-9140-y
354. Andreas Distler, Tom Kelsey, arXiv:1301.6023 The semigroups of order 9 and their automorphism groups
355. Dariush Divsalar, Sudarsan V. S. Ranganathan, Richard D. Wesel, On the Girth of (3,L) Quasi-Cyclic LDPC Codes based on Complete Protographs, preprint arXiv:1504.04975 [A003111]
356. Atul Dixit, Bibekananda Maji, Partition implications of a new three parameter q-series identity, arXiv:1806.04424 [math.CO], 2018. (A115995)
357. Dragomir Z. Djokovic, arXiv:math.AC/0609262 Poincare series of some pure and mixed trace algebras of two generic matrices, J. Algebra 309 (2007), no. 2, 654-671.
358. Norman Do and Paul Norbury, Pruned Hurwitz numbers, arXiv preprint arXiv:1312.7516, 2013
359. Dragomir Z. Djokovic and Benjamin H. Smith, Quaternionic matrices: Unitary similarity, simultaneous triangularization and some trace identities (2007), arXiv:0709.0513.
360. P. T. Do, D. Rossin and T. T. H. Tran, Combinatorial bijections from hatted avoiding permutations in S_n(132) to generalized Dyck and Motzkin paths, Arxiv preprint arXiv:1208.1075, 2012
361. Phan Thuan Do, Thi Thu Huong Tran, Vincent Vajnovszki, Exhaustive generation for permutations avoiding a (colored) regular sets of patterns, arXiv:1809.00742 [math.CO], 2018. (A000045, A000079, A000108, A000129, A000984, A001519, A006318, A034943, A215928)
362. Vladimir Dobrić, Patricia Garmirian, Marina Skyers, Lee J. Stanley, Polynomial time relatively computable triangular arrays for almost sure convergence, Illinois J. Math. (2019) Vol. 63, No. 2 (2019), 219-257. doi:10.1215/00192082-7768719
363. Vladimir Dobrić, M Skyers, LJ Stanley, Polynomial Time Computable Triangular Arrays For Almost Sure Convergence, arXiv preprint arXiv:1603.04896, 2016
364. R. Dobrow and J. A. Fill, On the Markov chain for the move-to-root rule for binary search trees , Annals of Applied Probability, 5, 1-19 (1995).
365. John B. Dobson, A matrix variation on Ramus's identity for lacunary sums of binomial coefficients, arXiv preprint arXiv:1610.09361, 2016
366. A. Dochtermann, Face rings of cycles, associahedra, and standard Young tableaux, arXiv preprint arXiv:1503.06243, 2015
367. K. Dohmen, Closed-form expansions for the universal edge elimination polynomial, arXiv preprint arXiv:1403.0969, 2014
368. K. Dohmen, M. Trinks, An Abstraction of Whitney's Broken Circuit Theorem, arXiv preprint arXiv:1404.5480, 2014
369. Jean-Paul Doignon and Anthony Labarre, "On Hultman Numbers", J. Integer Sequences, Volume 10, 2007, Article 07.6.2.
370. T. Dokos, I. Pak, The expected shape of random doubly alternating Baxter permutations, arXiv:1401.0770, 2014.
371. D. Z. Dokovic, Poincare series of some pure and mixed trace algebras of two generic matrices, J. Alg. 309 (2) (2007) 654-671 doi:10.1016/j.jalgebra.2006.09.018
372. D. Z. Dokovic, I. Kotsireas, D. Recoskie, J. Sawada, Charm bracelets and their application to the construction of periodic Golay pairs, Discrete Applied Mathematics, Volume 188, 19 June 2015, Pages 32–40.; also arXiv:1405.7328, 2014.
373. D. Z. Dokovic, B. H. Smith, Quaternionic matrices: Unitary similarity, simultaneous triangularizations and some trace identities, Lin. Alg. Appl. 428 (2008) 890-910 doi:10.1016/j.laa.2007.08.022
374. Arthur Dolgopolov. Equitable Sequencing and Allocation Under Uncertainty, Preprint, 2016; https://arthurdolgopolov.net/papers/TM.pdf
375. U. P. Dolhare, V. V. Nalawaede, Fixed Points in Mathematics, Journal of Applied Science and Computations (2019) Vol. VI, Issue III, 2221-2236. PDF
376. Tomislav Doli, "Maximum Product Over Partitions Into Distinct Parts", J. Integer Sequences, Volume 8, 2005, Article 05.5.8.
377. I. Dolinka, J. East, A. Evangelou, D. FitzGerald, N. Ham, et al., Enumeration of idempotents in diagram semigroups and algebras, arXiv preprint arXiv:1408.2021, 2014
378. I. Dolinka, J. East, A. Evangelou et al, Idempotent statistics of the Motzkin and Jones Monoids, arXiv:1507.04838 (2015)
379. I Dolinka, J East, RD Gray, Motzkin monoids and partial Brauer monoids, arXiv preprint arXiv:1512.02279, 2015.
380. David Dolžan, Gabriel Verret, The automorphism group of the zero-divisor digraph of matrices over an antiring, arXiv:1908.04614 [math.AC], 2019. (A048291)
381. Noah Doman, The Identity of the Abelian Sandpile Group, Bachelor Thesis, University of Groningen (2020). [1] (A007341) This remarkable formula can be found on the Online Encyclopedia of Integer Sequences with sequence code A007341.
382. Domanski, Pawel; Langenbruch, Michael Hadamard multipliers on spaces of real analytic functions. Adv. Math. 240 (2013), 575-612.
383. Michael Domaratzki, "Combinatorial Interpretations of a Generalization of the Genocchi Numbers", J. Integer Sequences, Volume 7, 2004, Article 04.3.6.
384. Michael Domaratzki, Trajectory-based codes, Acta Informatica, Volume 40, Numbers 6-7 / May, 2004.
385. Robert Donaghey, Alternating permutations and binary increasing trees, Journal of Combinatorial Theory, Series A, Volume 18, Issue 2, March 1975, Pages 141-148.
386. Robert Donaghey, Binomial self-inverse sequences and tangent coefficients, Journal of Combinatorial Theory, Series A, Volume 21, Issue 2, September 1976, Pages 155-163.
387. Robert Donaghey, Automorphisms on Catalan trees and bracketings, Journal of Combinatorial Theory, Series B, Volume 29, Issue 1, August 1980, Pages 75-90.
388. Robert Donaghey, Restricted plane tree representations of four Motzkin-Catalan equations, Journal of Combinatorial Theory, Series B, Volume 22, Issue 2, April 1977, Pages 114-121.
389. Robert Donaghey, Louis W. Shapiro, Motzkin numbers, Journal of Combinatorial Theory, Series A, Volume 23, Issue 3, November 1977, Pages 291-301.
390. J. Dong, V. Elser, G. Gyawali, K. Y. Jee, J. Kent-Dobias, A. Mandaiya, M. Renz, Y. Su, Glass phenomenology in the hard matrix model, arXiv:1912.07558 [cond-mat.stat-mech], 2019. (A206711)
391. Robert W. Donley, Partitions for semi-magic squares of size three, arXiv:1911.00977 [math.CO], 2019. (A002817)
392. Robert W. Donley, Jr., Binomial arrays and generalized Vandermonde identities, arXiv:1905.01525 [math.CO], 2019. (A000110, A001006, A008290, A011971, A090850)
393. Cyann Donnot, Antoine Genitrini, Yassine Herida, Unranking Combinations Lexicographically: an efficient new strategy compared with others, hal-02462764 [cs] / [cs.DS] / [math] / [math.CO], 2020. Abstract (A059797, A127717, A264751)
394. D. M. Donovan, T. S. Griggs, T. A. McCourt, J. Opršal, D. Stanovský, Distributive and anti-distributive Mendelsohn triple systems, arXiv preprint arXiv:1411.5184, 2014
395. M. Doring, J. Haidenbauer, U.-G. Meissner and A. Rusetsky, Dynamical coupled-channel approaches on a momentum lattice, Arxiv preprint arXiv:1108.0676, 2011.
396. T. Doslic, Handshakes across a (round) table, JIS 13 (2010) #10.2.7.
397. T. Doslic, Seven (lattice) paths to log-convexity, Acta Appl. Math. 110 (2010) 1373-1392, doi:10.1007/s10440-009-9515-4
398. Tomislav Doslic, Planar polycyclic graphs and their Tutte polynomials, Journal of Mathematical Chemistry, Volume 51, Issue 6, 2013, pp. 1599-1607.
399. T. Doslic, Kepler-Bouwkamp Radius of Combinatorial Sequences, Journal of Integer Sequences, Vol. 17, 2014, #14.11.3.
400. Tomislav Došlić, On the number of spanning trees in alternating polycyclic chains. Journal of Mathematical Chemistry (2018), 1–7. doi:10.1007/s109
401. Tomislav Došlić, Block allocation of a sequential resource, Ars Mathematica Contemporanea (2019) Vol. 17, 79-88. doi:10.26493/1855-3974.1508.f8c (A035343)
402. Tomislav Došlić, On the Laplacian Szeged Spectrum of Paths, Iranian J. Math. Chem. (2020) Vol. 11, No. 1, 57−63. PDF (A141387)
403. Tomislav Doslic and R. Sharafdini, Hosoya Index of Splices, Bridges, and Necklaces, in Distance, Symmetry, and Topology in Carbon Nanomaterials, 2016, pp 147-156. Part of the Carbon Materials: Chemistry and Physics book series (CMCP, volume 9), doi:10.1007/978-3-319-31584-3_10
404. T Doslic, T Short, Maximal matchings in polyspiro and benzenoid chains, arXiv preprint arXiv:1511.00590, 2015
405. Tomislav Doslic, I Zubac, Counting maximal matchings in linear polymers, ARS MATHEMATICA CONTEMPORANEA 11 (2016) 255–276, http://amc-journal.eu
406. Tomislav Došlić, Ivana Zubac, Partition of pi-electrons among the faces of polyhedral carbon clusters>, I. J Math Chem (2018), Springer International Publishing, 1-13. doi:10.1007/s10910-018-0902-9
407. Audace Amen Vioutou Dossou-Olory, Leaf-induced subtrees of leaf-Fibonacci trees, arXiv:1811.06392 [math.CO], 2018.
408. Audace A. V. Dossou-Olory, Graphs and unicyclic graphs with extremal connected subgraphs, arXiv:1812.02422 [math.CO], 2018. (A001429)
409. Audace A. V. Dossou-Olory, Cut and pendant vertices and the number of connected induced subgraphs of a graph, arXiv:1910.04552 [math.CO], 2019. (A003317)
410. V. Dotsenko, Pattern avoidance in labelled trees, Arxiv preprint arXiv:1110.0844, 2011
411. V. Dotsenko and A. Khoroshkin, Shuffle algebras, homology, and consecutive pattern avoidance, Arxiv preprint arXiv:1109.2690, 2011 and Algebra Number Theory 7, No. 3, 673-700 (2013) doi:10.2140/ant.2013.7.673
412. Aria Dougherty, Nick Mayers, Robert Short, How to Build a Graph in n Days: Some Variants on Graph Assembly, arXiv:1807.08079 [math.CO], 2018. (A171792)
413. Michael Dougherty, Christopher French, Benjamin Saderholm, and Wenyang Qian, Hankel Transforms of Linear Combinations of Catalan Numbers, Journal of Integer Sequences, Vol. 14 (2011), Article 11.5.1.
414. Robert Dougherty-Bliss, Doron Zeilberger, Automatic Conjecturing and Proving of Exact Values of Some Infinite Families of Infinite Continued Fractions, arXiv:2004.00090 [math.NT], 2020. The authors would like to thank the OEIS [8] for its help in identifying promising sequences of integers that arose in the evaluation of these continued fractions.
415. Doust, Ian; Hirschhorn, Michael D.; Ho, Jocelyn, Trigonometric identities, linear algebra and computer algebra. Amer. Math. Monthly 112 (2005), no. 2, 155-164.
416. J. M. Dover, On two OEIS conjectures, arXiv:1606.08033 [math.CO], 2016.
417. Jeremy M. Dover, Some Notes on Pairs in Binary Strings, arXiv preprint arXiv:1609.00980, 2016 ["Fortunately, when analyzing computational data for z(n, k, m), we searched the OEIS [1] for the case m = 0, which yielded an unexpected connection with the sequence A046854."]
418. O. Dovgoshey, E. Petrov, H.-M. Teichert, On spaces extremal for the Gomory-Hu inequality, arXiv preprint arXiv:1412.1979, 2014
419. Andrei-Lucian Drăgoi, A Note on Composition and Recursion, in Journal of Advances in Mathematics and Computer Science (2017), Vol. 25, No. 2, pp 1-32. doi:10.9734/JAMCS/2017/36895 (A006450, A007097, A218829, A282251)
420. Branko Dragovich, On Summation of p-Adic Series, arXiv:1702.02569 [math.NT], 2017.
421. Branko Dragovich, Amdrei Yu. Khrennikov, S. V. Kozyrev, I. V. Volovich, E. I. Zelenov, p-Adic Mathematical Physics: The First 30 Years, arXiv:1705.04758 [math-ph], 2017.
422. Branko Dragovich, Andrei Yu. Khrennikov, Natasa Z. Misic, Summation of p-Adic Functional Series in Integer Points, arXiv:1508.05079, 2015
423. B. Dragovich, N. Z. Misic, p-Adic invariant summation of some p-adic functional series, P-Adic Numbers, Ultrametric Analysis, and Applications, October 2014, Volume 6, Issue 4, pp 275-283.
424. J. Draisma, E. Horobet, G. Ottaviani, B. Sturmfels and R. K. Thomas, The Euclidean distance degree of an algebraic variety, arXiv preprint arXiv:1309.0049, 2013
425. Brian Drake, Limits of areas under lattice paths, Discrete Mathematics, Volume 309, Issue 12, 28 June 2009, Pages 3936-3953.
426. Dan Drake, The combinatorics of associated Hermite polynomials (2007), arXiv:0709.0987; European Journal of Combinatorics, Volume 30, Issue 4, May 2009, Pages 1005-1021.
427. D. Drake, Bijections from Weighted Dyck Paths to Schröder Paths, J. Int. Seq. 13 (2010) # 10.9.2
428. Drake, Dan Higher-order matching polynomials and d-orthogonality. Adv. in Appl. Math. 46 (2011), no. 1-4, 226-246.
429. Brian Drake, Ira M. Gessel and Guoce Xin, "Three Proofs and a Generalization of the Goulden-Litsyn-Shevelev Conjecture on a Sequence Arising in Algebraic Geometry", J. Integer Sequences, Volume 10, 2007, Article
430. Dan Drake and Jang Soo Kim, k -distant crossings and nestings of matchings and partitions (2008) arXiv:0812.2725
431. Dan Drake, Ryan Gantner, arXiv:1109.3273 Generating functions for plateuas in Motzkin paths
432. Georgios Drakopoulos, Xenophon Liapakis, Evaggelos Spyrou, Giannis Tzimas, Phivos Mylonas, Spyros Sioutas, Computing Long Sequences of Consecutive Fibonacci Integers with TensorFlow, IFIP International Conference on Artificial Intelligence Applications and Innovations (AIAI 2019), Springer, Cham, 150-160. doi:10.1007/978-3-030-19909-8_13
433. Georgios Drakopoulos, Dimitrios Tsolis, Antonia Stefani, Phivos Mylonas, The Biomolecular Computation Paradigm: A Survey In Massive Biological Computation, IFIP International Conference on Artificial Intelligence Applications and Innovations, AIAI 2018: Artificial Intelligence Applications and Innovations. Springer, Cham, 2018, pp 157-167. doi:10.1007/978-3-319-92016-0_15 (A000012)
434. Vlad-Florin Dragoi, Valeriu Beiu, Fast Reliability Ranking of Matchstick Minimal Networks, arXiv:1911.01153 [cs.DM], 2019. (A025591)
435. K. A. Draziotis, Computation of Pell Numbers of the Form p*X^2, CAI 2009, Lect. Notes Comp. Sci 5725 (2009) 220-226.
436. K. A. Draziotis, V. Martidis, S. Tiganourias, Product Subset Problem: Applications to number theory and cryptography, arXiv:2002.07095 [math.NT], 2020. (A002997)
438. Elizabeth Drellich, Heather C. Smith, Folding Words Around Trees: Models Inspired by RNA, A Project-Based Guide to Undergraduate Research in Mathematics, Birkhäuser, Cham (2020), 1-28. doi:10.1007/978-3-030-37853-0_1
439. Vesselin Drensky, Graded Algebras, Algebraic Functions, Planar Trees, and Elliptic Integrals, arXiv:2004.05596 [math.RA], 2020, see p. 20. (A001003)
440. Gregory P. Dresden, "Three transcendental numbers from the last non-zero digits of n^n, F_n and n!", 'Mathematics Magazine', pp. 96-105, vol. 81, April 2008.
441. G. P. B. Dresden, A simplified Binet Formula for k-Generalized Fibonacci Numbers, arXiv:0905.0304 [math.NT], 2009
442. A. W. M. Dress, B. Morgenstern and J. Stoye, doi:10.1016/S0893-9659(98)00054-8 The Number of Standard and of Effective Multiple Alignments, Appl. Math. Lett. 11(4) (1998) 43-49. (Preprint)
443. F. Drewes et al., Tight Bounds for Cut-Operations on Deterministic Finite Automata, in Lecture Notes in Computer Science, Volume 9288, 2015, Machines, Computations, and Universality, 7th International Conference, MCU 2015, Famagusta, North Cyprus, September 9-11, 2015, Editors: Jerome Durand-Lose, Benedek Nagy, ISBN: 978-3-319-23110-5 (Print) 978-3-319-23111-2 (Online)
444. J. A. B. Dris, Euclid-Euler Heuristics for (Odd) Perfect Numbers, arXiv preprint arXiv:1310.5616, 2013
445. J. A. B. Dris, A Sufficient Condition for Disproving Descartes's Conjecture on Odd Perfect Numbers, arXiv preprint arXiv:1311.6803, 2013
446. Jose A. B. Dris, Conditions Equivalent to the Descartes-Frenicle-Sorli Conjecture on Odd Perfect Numbers, arXiv preprint arXiv:1610.01868, 2016
447. Jose Arnaldo B. Dris, Analysis of the Ratio D(n)/n, arXiv:1703.09077 [math.NT], 2017.
448. Jose Arnaldo B. Dris, On a curious biconditional involving the divisors of odd perfect numbers, Notes on Number Theory and Discrete Mathematics, Vol. 23, 2017, No. 4, 1–13http://nntdm.net/papers/nntdm-23/NNTDM-23-4-01-13.pdf
449. Jose Arnaldo Bebita Dris, Immanuel Tobias San Diego, Some Modular Considerations Regarding Odd Perfect Numbers, arXiv:2002.12139 [math.NT], 2020. (A033879)
450. Jose Arnaldo Bebita Dris, Doli-Jane Uvales Tejada, Conditions equivalent to the Descartes–Frenicle–Sorli Conjecture on odd perfect numbers - Part II, Notes on Number Theory and Discrete Mathematics (2018) Vol. 24, No. 3, 62-67. doi:10.7546/nntdm.2018.24.3.62-67 (A033879)
451. Jose Arnaldo Bebita Dris, Doli-Jane Uvales Tejada, A note on the OEIS sequence A228059, Notes on Number Theory and Discrete Mathematics (2019) Vol. 25, No. 1, 199-205. doi:10.7546/nntdm.2019.25.1.199-205 (A033879, A228059, A271816)
452. C. Drischler, K. Hebeler, A. Schwenk, Chiral interactions up to N3LO and nuclear saturation, arXiv:1710.08220 [nucl-th], 2017. (A064732)
453. Michael Drmota, Christian Krattenthaler, A Joint Central Limit Theorem for the Sum-of-Digits Function, and Asymptotic Divisibility of Catalan-like Sequences, arXiv:1803.02178 [math.NT], 2018
454. M. Drmota, B. Gittenberger, The shape of unlabeled rooted random trees, arXiv:1003.1322 and Eur. J. Combinat. 31 (8) (2010) 2028-2063 doi:10.1016/j.ejc.2010.05.011
455. Paul Drube, Generating Functions for Inverted Semistandard Young Tableaux and Generalized Ballot Numbers, arXiv preprint arXiv:1606.04869, 2016
456. Paul Drube, Set-Valued Tableaux & Generalized Catalan Numbers, arXiv preprint arXiv:1607.07411, 2016
457. Paul Drube, Maxwell Krueger, Ashley Skalsky, Meghan Wren, Set-Valued Young Tableaux and Product-Coproduct Prographs, arXiv:1710.02709 [math.CO], 2017.
458. B.-S. Du, Congruence identities arising from dynamical systems, Appl. Math. Letters, 12 (1999), 115-119.
459. Rosena R. X. Du, Xiaojie Fan, Yue Zhao, Enumeration on row-increasing tableaux of shape 2 X n, arXiv:1803.01590 [math.CO], 2018. (A001003, A126216, A006318)
460. R. R. X. Du, J. He, X. Yun, Counting vertices in plane and k-ary trees with given outdegree, arXiv preprint arXiv:1501.07468, 2015.
461. Rosena R. X. Du, Jia He, Xueli Yun, Counting Vertices with Given Outdegree in Plane Trees and k-ary Trees, Graphs and Combinatorics (2019), Vol. 35, Issue 1, 221–229. doi:10.1007/s00373-018-1975-8
462. R. R. X. Du, Y. Nie, X. Sun, Bijective Enumerations on Humps and Peaks in (k,a)-paths and (n,m)-Dyck paths, arXiv preprint arXiv:1406.2449, 2014
463. R. Duarte and A. G. de Oliveira, Short note on the convolution of binomial coefficients, arXiv preprint arXiv:1302.2100, 2013
464. R. Duarte, A. G. de Oliveira, Note on the Convolution of Binomial Coefficients, Journal of Integer Sequences, 2013, #13.7.6.
465. R. Duarte, A. G. de Oliveira, A Famous Identity of Hajós in Terms of Sets, Journal of Integer Sequences, 17 (2014), #14.9.1.
466. A Dubey, A Simplified Analysis To A Generalized Restricted Partition Problem, Principia: The Princeton Undergraduate Mathematics Journal, Issue 2, 2016; http://pumj.org/docs/Issue2/Article4.pdf
467. Artras Dubickas, On a sequence related to that of Thue-Morse and its applications, Discrete Mathematics, Volume 307, Issues 9-10, 6 May 2007, Pages 1082-1093.
468. Artras Dubickas, On integer sequences generated by linear maps. Glasg. Math. J. 51, No. 2, 243-252 (2009). doi:10.1017/S0017089508004655
469. Arturas Dubickas, Heights of squares of Littlewood polynomials and infinite series, Ann. Polon. Math. 105 (2012), 145-163.
470. Harvey Dubner, "Carmichael Numbers of the Form (6m+1)(12m+1)(18m+1)", J. Integer Sequences, Volume 5, 2002, Article 02.2.1.
471. Harvey Dubner, "Twin Prime Statistics", J. Integer Sequences, Volume 8, 2005, Article 05.4.2.
472. Harvey Dubner and Tony Forbes, "Prime Pythagorean Triangles", J. Integer Sequences, Volume 4, 2001, Article 01.2.3.
473. Harvey Dubner and Torbjörn Granlund, "Primes of the Form (b^n+1)/(b+1)", J. Integer Sequences, Volume 3, 2000, Article 00.2.7.
474. Catherine Dubois, Alain Giorgetti, Tests and proofs for custom data generators, Formal Aspects of Computing (2018), 1-26. doi:10.1007/s00165-018-0459-1
475. Dubois C., Giorgetti A., Genestier R. (2016) Tests and Proofs for Enumerative Combinatorics. In: Aichernig B., Furia C. (eds) Tests and Proofs. TAP 2016. Lecture Notes in Computer Science, vol 9762. Springer.
476. L Ducas, T Prest, Fast Fourier Orthogonalization, Preprint 2015, http://eprint.iacr.org/2015/1014.pdf
477. E. G. DuCasse et al., Graphs whose vertices are forests with bounded degree: order and size, Congressus Numerantium, 205 (2010), 65-74.
478. Gerard H. E. Duchamp, Florent Hivert, Jean-Christophe Novelli et al., Noncommutative Symmetric Functions VII: Free Quasi-Symmetric Functions Revisited (2008); arXiv:0809.4479
479. G. H. E Duchamp, N. Hoang-Nghia, A. Tanasa, A word Hopf algebra based on the selection/quotient principle, Séminaire Lotharingien de Combinatoire 68 (2013), Article B68c.
480. Gerard Henry Edmond Duchamp, Jean-Gabriel Luque, Jean-Christophe Novelli et al., Hopf algebras of diagrams (2007), arXiv:0710.5661.
481. Eric Duchêne, A. S. Fraenkel, V. Gurvich, N. Bao Ho, C. Kimberling, U. Larsson, Wythoff wisdom, Preprint 2016; http://www.wisdom.weizmann.ac.il/~fraenkel/Papers/WythoffWisdomJune62016.pdf
482. Eric Duchêne, Aviezri S. Fraenkel, Vladimir Gurvich, Nhan Bao Ho, Clark Kimberling, Urban Larsson, Wythoff Visions, Games of No Chance 5 (2017) Vol. 70, pages 101-153. Abstract (A000201, A001950, A033513, A080164, A165357, and many others)
483. Duchêne, Eric, and Michel Rigo. "A morphic approach to combinatorial games: the Tribonacci case." RAIRO-Theoretical Informatics and Applications 42.2 (2008): 375-393.
484. Duchi, Enrica; Fedou, Jean-Marc; Rinaldi, Simone, From object grammars to ECO systems. Theoret. Comput. Sci. 314 (2004), no. 1-2, 57-95.
485. Enrica Duchi, Andrea Frosini, Renzo Pinzani and Simone Rinaldi, "A Note on Rational Succession Rules", J. Integer Sequences, Volume 6, 2003, Article 03.1.7.
486. Enrica Duchi, Simone Rinaldi, Gilles Schaeffer, The number of Z-convex polyominoes (2006), arXiv:math/0602124.
487. Duchi, E.; Sulanke, R. A., The 2^{n-1} factor for multi-dimensional lattice paths with diagonal steps. Sém. Lothar. Combin. 51 (2004/05), Art. B51c, 16 pp.
488. P. Duchon, Q-grammaires: un outil pour l'énumération, PHD thesis, Université Bordeaux 1 (1998).
489. Philippe Duchon, On the link pattern distribution of quarter-turn symmetric FPL configurations (2007), arXiv:0711.2871.
490. P. Duchon, R. Duvignau, A new generation tree for permutations, FPSAC 2014, Chicago, USA; Discrete Mathematics and Theoretical Computer Science (DMTCS) Proceedings, 2014, 679-690; http://www.dmtcs.org/dmtcs-ojs/index.php/proceedings/article/viewFile/dmAT0159/4546. ["The OEIS (2013) was very helpful in identifying the rencontre numbers in some apparently unrelated work, and thus lead to the tree construction that is the focus of the present paper."]
491. P. Duchon, P. Flajolet, G. Louchard and G. Schaeffer, Random Sampling from Boltzmann Principles, Proc. ICALP'2002, Lecture Notes in Computer Science, July 2002.
492. P. Duchon, P. Flajolet, G. Louchard and G. Schaeffer, Boltzmann Samplers for the Random Generation of Combinatorial Structures, Combin. Probab. Comput. 13 (2004), no. 4-5, 577-625.
493. Jerzy Duda, Adam Stawowy, A VNS Approach to Solve Multi-level Capacitated Lotsizing Problem with Backlogging, International Conference on Variable Neighborhood Search, ICVNS 2018: Variable Neighborhood Search (2018), Springer, Cham, 41-51. doi:10.1007/978-3-030-15843-9_4
494. William Dugan, Sam Glennon, Paul E. Gunnells, Einar Steingrimsson, Tiered trees, weights, and q-Eulerian numbers, arXiv:1702.02446 [math.CO], 2017.
495. D. Dugger, Bigraded cohomology of Z/2-equivariant Grassmannians, arXiv preprint arXiv:1209.5067, 2012 [The Online Encyclopedia of Integer Sequences [OE] was useful in discovering the formula in part (b).]
496. S. Dugowson, Representation of finite connective spaces (2007), arXiv:0707.2542.
497. Stéphane Duguay, Steven Pigeon, Comparison of Pixel Correlation Induced by Space-Filling Curves on 2D Image Data, The 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (Metz, France, 2019) Vol. 1, 294-297.. doi:10.xxxxx PDF (A096969)
498. Duh, G. H., Lin, Y. C. R., Ma, S. M., & Yeh, Y. N. (2018). Some statistics on Stirling permutations and Stirling derangements. Discrete Mathematics, 341(9), 2478-2484.
499. Andrej Dujella, Mirela Jukić Bokun, Ivan Soldo, A Pellian equation with primes and applications to D(-1)-quadruples, arXiv:1706.01959 [math.NT], 2017.
500. A. Dujella, A. S.Janfeda, S. Salami, A Search for High Rank Congruent Number Elliptic Curves, JIS 12 (2009) 09.5.8
501. W. Duke, Stephen J. Greenfield and Eugene R. Speer, "Properties of a Quadratic Fibonacci Recurrence", J. Integer Sequences, Volume 1, 1998, Article 98.1.8.
502. M. Dukes, S. Kitaev, J. Remmel, E. Steingrimsson, Enumerating (2+2)-free posets by indistinguishable elements, J. Combin. 2 (1) (2011) 139-163 doi:10.4310/JOC.2011.v2.n1.a6
503. M. Dukes and Y. Le Borgne, Parallelogram polyominoes, the sandpile model on a complete bipartite graph, and a q,t-Narayana polynomial, Journal of Combinatorial Theory, Series A, Volume 120, Issue 4, May 2013, Pages 816-842.
504. Mark Dukes, Peter R. W. McNamara, Refining the bijections among ascent sequences, (2+2)-free posets, integer matrices and pattern-avoiding permutations, arXiv:1807.11505 [math.CO], 2018. (A098569)
505. Mark Dukes, Thomas Selig, Jason P. Smith, Einar Steingrimsson, Permutation graphs and the Abelian sandpile model, tiered trees and non-ambiguous binary trees, arXiv:1810.02437 [math.CO], 2018. (A002190)
506. Mark Dukes, Chris D White, Web Matrices: Structural Properties and Generating Combinatorial Identities, Electronic Journal Of Combinatorics, 23(1) (2016), #P1.45
507. Peter Dukes, Notes for Math 422: Enumeration and Ramsey Theory, University of Victoria BC Canada (2019). PDF (A000088)
508. Peter J Dukes, K Garaschuk, On the cone of weighted graphs generated by triangles, arXiv preprint arXiv:1608.06017, 2016
509. P. J. Dukes, J. Niezen, Pairwise balanced designs of dimension three, AUSTRALASIAN JOURNAL OF COMBINATORICS, Volume 61(1) (2015), Pages 98-113; http://ajc.maths.uq.edu.au/pdf/61/ajc_v61_p098.pdf
510. W. M. B. Dukes, On a Unimodality Conjecture in Matroid Theory, Discrete Math. Theor. Comput. Sci., Volume 5 n° 1 (2002), pp. 181-190.
511. Bruno Dular, Cycles of Sums of Integers, arXiv:1905.01765 [math.NT], 2019. (A001220)
512. Glen Joyce C. Dulatre, Jamilah V. Alarcon, Vhenedict M. Florida, Daisy Ann A. Disu, On Fractal Sequences, DMMMSU-CAS Science Monitor (2016-2017) Vol. 15 No. 2, 109-113. PDF (A000034, A002260, A004736, A005614, A053838, A053839, A053840, A071797, A082117, A084531)
513. Ignacy Duleba, Kinematic Models of Doubly Generalized N-trailer Systems, Journal of Intelligent & Robotic Systems (2018), 1-8. doi:10.1007/s10846-018-0817-5 (A000079)
514. P. Dumas, Algebraic aspects of B-regular series. In Lingas A., Karlsson R. and Carlsson S. (editors), Automata, Languages and Programming. EATCS, Lecture Notes in Computer Science, pages 457-468. - Springer Verlag, 1993. Proceedings of the 20th International Colloquium ICALP 93, Lund, Sweden. (Another version; Citeseer.)
515. Adrian Dumitrescu, Ritankar Mandal, New Lower Bounds for the Number of Pseudoline Arrangements, arXiv:1809.03619 [math.CO], 2018. (A006245)
516. DS Dummit, EP Dummit, H Kisilevsky, Characterizations of quadratic, cubic, and quartic residue matrices, arXiv preprint arXiv:1512.06480, 2015
517. B. Duncan and R. Peele, Bell and Stirling numbers for graphs, JIS 12 (2009) 09.7.1
518. P. Duncan and Einar Steingrimsson, Pattern avoidance in ascent sequences, Arxiv preprint arXiv:1109.3641, 2011 and El. J. Combinat. 18 (1) (2011) P226
519. D. Dunham, Enumerations of Hyperbolic Truchet Tiles, http://www.duluth.umn.edu/~ddunham/isama11.pdf
520. Edward Dunne and Klaus Hulek, Mathematics Subject Classification 2020 (MSC2020), EMS Newsletter (March 2020), 5-6. doi:10.4171/NEWS/115/2
521. Fabien Durand, Julien Leroy, and Gwenaël Richomme, "Do the Properties of an S-adic Representation Determine Factor Complexity?", Journal of Integer Sequences, Vol. 16 (2013), #13.2.6.
522. E. Duran, S. L. Jordan, J. E. Lewis, C. E. Tiedemann, Using Mathematics on the Web and Other Computer Technology to Facilitate Learning, ITL Conference 2002.
523. Ivana Đurđev, Igor Dolinka, James East, Sandwich semigroups in diagram categories, arXiv:1910.10286 [math.GR], 2019. (A001006, A064189)
524. Cassandra Durell, Stefan Forcey, Level-1 Phylogenetic Networks and their Balanced Minimum Evolution Polytopes, arXiv:1905.09160 [math.CO], 2019. (A032119, A033282)
525. Bergfinnur Durhuus and Soren Eilers, Enumeration of pyramids of one-dimensional pieces of arbitrary fixed integer length (2009) arXiv:0902.2274
526. Remigiusz Durka, Kamil Grela, On the number of possible resonant algebras, arXiv:1911.12814 [hep-th], 2019. (A001423, A001426, A058129, A058131)
527. Pierre Dusart, Explicit estimates of some functions over primes, The Ramanujan Journal, 2016, doi:10.1007/s11139-016-9839-4
528. Pierre Dusart, Estimates of the k-th prime under the Riemann hypothesis, The Ramanujan Journal (2018), Vol. 47, Issue 1, 141–154. doi:10.1007/s11139-017-9984-4
529. J. M. Dusel, Balanced parabolic quotients and branching rules for Demazure crystals, 2014; PDF
530. C. L. Duta, L. Gheorghe, N. Tapus, Framework for Evaluation and Comparison of Primality Testing Algorithms. Published in: Control Systems and Computer Science (CSCS), 2015 20th International Conference on Date of Conference: 27-29 May 2015 Page(s): 483 - 490 Print ISBN: 978-1-4799-1779-2 INSPEC Accession Number: 15397726
531. Christophe Dutang. Theoretical L-moments and TL-moments Using Combinatorial Identities and Finite Operators. 2015. hal-01163638, https://hal.archives-ouvertes.fr/hal-01163638/document
532. Anjan Dutta and Hichem Sahbi, High Order Stochastic Graphlet Embedding for Graph-Based Pattern Recognition, arXiv:1702.00156, 2017.
533. Anjan Dutta, Hichem Sahbi, Graph Kernels based on High Order Graphlet Parsing and Hashing, arXiv:1803.00425 [cs.CV], 2018. (A002905)
534. Utkal Keshari Dutta, Bijan Kumar Patel, Prasanta Kumar Ray, A brief remark on balancing-Wieferich primes, Mathematica, 60 (83), No. 1 (2018), 48–53. PDF
535. Iwan Duursma, Xiao Li, Hsin-Po Wang, Multilinear Algebra for Distributed Storage, arXiv:2006.08911 [cs.IT], 2020. (A053088)
536. Daniel Duverney, Takeshi Kurosawa, Iekata Shiokawa, Transformation formulas of finite sums into continued fractions, arXiv:1912.12565 [math.NT], 2019. (A001697)
537. Trinh Khanh Duy, Tomoyuki Shirai, The mean spectral measures of random Jacobi matrices related to Gaussian beta ensembles, preprint arXiv:1504.06904, 2015. [A000698, A167872]
538. S. V. Duzhin, D. V. Pasechnik, Groups acting on necklaces and sandpile groups, ftp://pdmi.ras.ru/pub/publicat/znsl/v421/p081.pdf, 2014.
539. Chris Dyer, Gábor Melis, Phil Blunsom, A Critical Analysis of Biased Parsers in Unsupervised Parsing, arXiv:1909.09428 [cs.CL], 2019. (A082582)
540. Dymacek, Wayne M.; Lambert, Isaac; Permutations avoiding runs of i,i+1,i+2 or i,i-1,i-2. J. Integer Seq. 14 (2011), no. 1, Article 11.1.6, 10 pp.
541. Wayne M. Dymacek, Isaac Lambert and Kyle Parsons, Arithmetic Progressions in Permutations, http://math.ku.edu/~ilambert/CN.pdf, 2012.
542. Askar Dzhumadildaev and Damir Yeliussizov, "Power Sums of Binomial Coefficients", Journal of Integer Sequences, Vol. 16 (2013), #13.1.1.
543. A. Dzhumadildaev, D. Yeliussizov, Path decompositions of digraphs and their applications to Weyl algebra, arXiv preprint arXiv:1408.6764v1, 2014. [Version 1 contained many references to the OEIS, which were removed in Version 2]
544. Askar Dzhumadil’daev and Damir Yeliussizov, Walks, partitions, and normal ordering, Electronic Journal of Combinatorics, 22(4) (2015), #P4.10.
545. A. Dzhumadil'daev, P. Zusmanovich, The alternative operad is not Koszul, arXiv:0906.1271 doi:10.1080/10586458.2011.544558 The alternative operad is not Koszul, Exper. Math. 20 (2) (2011) 138-144
546. M. Dziemianczuk, Counting Bipartite, k-Colored and Directed Acyclic Multi Graphs Through F-nomial coefficients (2009) arXiv:0901.1337
547. M. Dziemianczuk, Counting Lattice Paths With Four Types of Steps, Graphs and Combinatorics, September 2013, doi:10.1007/s00373-013-1357-1.
548. M. Dziemianczuk, Generalizing Delannoy numbers via counting weighted lattice paths, INTEGERS, 13 (2013), #A54.
549. Dziemiańczuk, M. "Enumerations of plane trees with multiple edges and Raney lattice paths." Discrete Mathematics 337 (2014): 9-24.
550. M. Dziemianczuk, On Directed Lattice Paths With Additional Vertical Steps, arXiv preprint arXiv:1410.5747, 2014.
551. Vasilii A. Dziubenko, Vladimir A. Letsko, Consecutive positive integers with the same number of divisors, arXiv:1811.05127 [math.NT], 2018. (A274639)