login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A065220
a(n) = Fibonacci(n) - n.
14
0, 0, -1, -1, -1, 0, 2, 6, 13, 25, 45, 78, 132, 220, 363, 595, 971, 1580, 2566, 4162, 6745, 10925, 17689, 28634, 46344, 75000, 121367, 196391, 317783, 514200, 832010, 1346238, 2178277, 3524545, 5702853, 9227430, 14930316, 24157780, 39088131, 63245947, 102334115, 165580100, 267914254
OFFSET
0,7
COMMENTS
E(n) = Fib(n+4)-(n+4): cost of maximum height Huffman tree of size n for Fibonacci sequence (Fibonacci sequence is minimizing absolutely ordered sequence of Huffman tree). - Alex Vinokur (alexvn(AT)barak-online.net), Oct 26 2004
REFERENCES
Vinokur A.B, Huffman trees and Fibonacci numbers, Kibernetika Issue 6 (1986) 9-12 (in Russian); English translation in Cybernetics 21, Issue 6 (1986), 692-696.
LINKS
Gregory Dresden, On the Brousseau sums Sum_{i=1..n} i^p*Fibonacci(i), arxiv.org:2206.00115 [math.NT], 2022.
Albert Frank, International Contest Of Logical Sequences, 2002 - 2003. Item 7
A. B. Vinokur, Huffman trees and Fibonacci numbers, Cybernetics 21, Issue 6 (1986), 692-696; also at Research Gate.
Alex Vinokur, Fibonacci connection between Huffman codes and Wythoff array, arXiv:cs/0410013 [cs.DM], 2004-2005.
FORMULA
a(n) = A000045(n) - A001477(n) = A000126(n-3) - 2 = A001924(n-4) - 1.
a(n) = a(n-1) + a(n-2) + n - 3 = a(n-1) + A000071(n-2).
G.f.: x^2*(2x-1)/((1-x-x^2)*(1-x)^2).
a(n) = Sum_{i=0..n} (i - 2)*F(n-i) for F(n) the Fibonacci sequence A000045. - Greg Dresden, Jun 01 2022
MAPLE
a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=a[n-1]+a[n-2] od: seq(a[n]-n, n=0..42); # Zerinvary Lajos, Mar 20 2008
MATHEMATICA
lst={}; Do[f=Fibonacci[n]-n; AppendTo[lst, f], {n, 0, 5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Mar 21 2009 *)
Table[Fibonacci[n]-n, {n, 0, 50}] (* or *) LinearRecurrence[{3, -2, -1, 1}, {0, 0, -1, -1}, 50] (* Harvey P. Dale, May 29 2017 *)
PROG
(PARI) a(n) = { fibonacci(n) - n } \\ Harry J. Smith, Oct 14 2009
(Haskell)
a065220 n = a065220_list !! n
a065220_list = zipWith (-) a000045_list [0..]
-- Reinhard Zumkeller, Nov 06 2012
(Magma) [Fibonacci(n) - n: n in [0..50]]; // G. C. Greubel, Jul 09 2019
(Sage) [fibonacci(n) - n for n in (0..50)] # G. C. Greubel, Jul 09 2019
(GAP) List([0..50], n-> Fibonacci(n) - n); # G. C. Greubel, Jul 09 2019
CROSSREFS
Sequence in context: A000135 A281865 A267698 * A048094 A335439 A181522
KEYWORD
easy,sign
AUTHOR
Henry Bottomley, Oct 22 2001
STATUS
approved