OFFSET
0,7
COMMENTS
E(n) = Fib(n+4)-(n+4): cost of maximum height Huffman tree of size n for Fibonacci sequence (Fibonacci sequence is minimizing absolutely ordered sequence of Huffman tree). - Alex Vinokur (alexvn(AT)barak-online.net), Oct 26 2004
REFERENCES
Vinokur A.B, Huffman trees and Fibonacci numbers, Kibernetika Issue 6 (1986) 9-12 (in Russian); English translation in Cybernetics 21, Issue 6 (1986), 692-696.
LINKS
Harry J. Smith, Table of n, a(n) for n = 0..300
Gregory Dresden, On the Brousseau sums Sum_{i=1..n} i^p*Fibonacci(i), arxiv.org:2206.00115 [math.NT], 2022.
Albert Frank, International Contest Of Logical Sequences, 2002 - 2003. Item 7
Albert Frank, Solutions of International Contest Of Logical Sequences, 2002 - 2003.
A. B. Vinokur, Huffman trees and Fibonacci numbers, Cybernetics 21, Issue 6 (1986), 692-696; also at Research Gate.
Alex Vinokur, Fibonacci connection between Huffman codes and Wythoff array, arXiv:cs/0410013 [cs.DM], 2004-2005.
Index entries for linear recurrences with constant coefficients, signature (3,-2,-1,1).
FORMULA
MAPLE
a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=a[n-1]+a[n-2] od: seq(a[n]-n, n=0..42); # Zerinvary Lajos, Mar 20 2008
MATHEMATICA
lst={}; Do[f=Fibonacci[n]-n; AppendTo[lst, f], {n, 0, 5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Mar 21 2009 *)
Table[Fibonacci[n]-n, {n, 0, 50}] (* or *) LinearRecurrence[{3, -2, -1, 1}, {0, 0, -1, -1}, 50] (* Harvey P. Dale, May 29 2017 *)
PROG
(PARI) a(n) = { fibonacci(n) - n } \\ Harry J. Smith, Oct 14 2009
(Haskell)
a065220 n = a065220_list !! n
a065220_list = zipWith (-) a000045_list [0..]
-- Reinhard Zumkeller, Nov 06 2012
(Magma) [Fibonacci(n) - n: n in [0..50]]; // G. C. Greubel, Jul 09 2019
(Sage) [fibonacci(n) - n for n in (0..50)] # G. C. Greubel, Jul 09 2019
(GAP) List([0..50], n-> Fibonacci(n) - n); # G. C. Greubel, Jul 09 2019
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Henry Bottomley, Oct 22 2001
STATUS
approved