This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A045925 a(n) = n*Fibonacci(n). 28
 0, 1, 2, 6, 12, 25, 48, 91, 168, 306, 550, 979, 1728, 3029, 5278, 9150, 15792, 27149, 46512, 79439, 135300, 229866, 389642, 659111, 1112832, 1875625, 3156218, 5303286, 8898708, 14912641, 24961200, 41734339, 69705888, 116311074 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Number of levels in all compositions of n+1 with only 1's and 2's. Apart from first term: row sums of the triangle in A131410. - Reinhard Zumkeller, Oct 07 2012 REFERENCES Jean Paul Van Bendegem, The Heterogeneity of Mathematical Research, a chapter in Perspectives on Interrogative Models of Inquiry, Volume 8 of the series Logic, Argumentation & Reasoning pp 73-94, Springer 2015. See Section 2.1. LINKS Reinhard Zumkeller, Table of n, a(n) for n = 0..1000 Rigoberto Flórez, Robinson Higuita, Alexander Ramírez, The resultant, the discriminant, and the derivative of generalized Fibonacci polynomials, arXiv:1808.01264 [math.NT], 2018. Alice L. L. Gao, Sergey Kitaev, On partially ordered patterns of length 4 and 5 in permutations, arXiv:1903.08946 [math.CO], 2019. S. Heubach and T. Mansour, Counting rises, levels and drops in compositions, arXiv:math/0310197 [math.CO], 2003. Index entries for linear recurrences with constant coefficients, signature (2,1,-2,-1). FORMULA G.f.: x*(1+x^2)/(1-x-x^2)^2. G.f.: Sum_{n>=1} phi(n)*Fibonacci(n)*x^n/(1 - Lucas(n)*x^n + (-1)^n*x^(2*n)) = Sum_{n>=1} n*Fibonacci(n)*x^n, where phi(n) = A000010(n) and Lucas(n) = A000204(n). - Paul D. Hanna, Jan 12 2012 a(n) = a(n-1) + a(n-2) + L(n-1). - Gary Detlefs, Dec 29 2012 a(n) = F(n+1) + Sum_{k=1..n-2} F(k)*L(n-k), F = A000045 and L = A000032. - Gary Detlefs, Dec 29 2012 a(n) = F(2*n)/Sum_{k=0..floor(n/2)} binomial(n-k,k)/(n-k). - Gary Detlefs, Jan 19 2013 a(n) = A014965(n) * A104714(n). - Michel Marcus, Oct 24 2013 a(n) = 3*A001629(n+1) - A001629(n+2) + A000045(n-1). - Ralf Stephan, Apr 26 2014 a(n) = 2*n*(F(n-2) + floor(F(n-3)/2)) + (n^3 mod 3*n), F = A000045. - Gary Detlefs, Jun 06 2014 E.g.f.: x*(exp(-x/phi)/phi + exp(x*phi)*phi)/sqrt(5), where phi = (1+sqrt(5))/2. - Vladimir Reshetnikov, Oct 28 2015 This is a divisibility sequence and is generated by  x^4 - 2*x^3 - x^2 + 2*x + 1. - R. K. Guy, Nov 13 2015 MATHEMATICA Table[Fibonacci[n]*n, {n, 0, 33}] (* Zerinvary Lajos, Jul 09 2009] *) LinearRecurrence[{2, 1, -2, -1}, {0, 1, 2, 6}, 34] (* or *) CoefficientList[ Series[(x + x^3)/(-1 + x + x^2)^2, {x, 0, 35}], x] (* Robert G. Wilson v, Nov 14 2015 *) PROG (MAGMA) [n*Fibonacci(n): n in [0..60]]; // Vincenzo Librandi, Apr 23 2011 (PARI) Lucas(n)=fibonacci(n-1)+fibonacci(n+1) a(n)=polcoeff(sum(m=1, n, eulerphi(m)*fibonacci(m)*x^m/(1-Lucas(m)*x^m+(-1)^m*x^(2*m)+x*O(x^n))), n) \\ Paul D. Hanna, Jan 12 2012 (PARI) a(n)=n*fibonacci(n) \\ Charles R Greathouse IV, Jan 12 2012_ (PARI) concat(0, Vec(x*(1+x^2)/(1-x-x^2)^2 + O(x^100))) \\ Altug Alkan, Oct 28 2015 (Haskell) a045925 n = a045925_list !! (n-1) a045925_list = zipWith (*) [0..] a000045_list -- Reinhard Zumkeller, Oct 01 2012 CROSSREFS Partial sums: A014286. Cf. A000045. Cf. A099920, A023607. Sequence in context: A262196 A261667 A116562 * A128020 A140659 A238462 Adjacent sequences:  A045922 A045923 A045924 * A045926 A045927 A045928 KEYWORD nonn,easy AUTHOR EXTENSIONS Incorrect formula removed by Gary Detlefs, Oct 27 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 20 12:37 EDT 2019. Contains 327237 sequences. (Running on oeis4.)