This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A045925 a(n) = n*Fibonacci(n). 22
 0, 1, 2, 6, 12, 25, 48, 91, 168, 306, 550, 979, 1728, 3029, 5278, 9150, 15792, 27149, 46512, 79439, 135300, 229866, 389642, 659111, 1112832, 1875625, 3156218, 5303286, 8898708, 14912641, 24961200, 41734339, 69705888, 116311074 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Number of levels in all compositions of n+1 with only 1's and 2's. Apart from first term: row sums of the triangle in A131410. - Reinhard Zumkeller, Oct 07 2012 REFERENCES Jean Paul Van Bendegem, The Heterogeneity of Mathematical Research, a chapter in Perspectives on Interrogative Models of Inquiry, Volume 8 of the series Logic, Argumentation & Reasoning pp 73-94, Springer 2015. See Section 2.1. LINKS Reinhard Zumkeller, Table of n, a(n) for n = 0..1000 S. Heubach and T. Mansour, Counting rises, levels and drops in compositions, arXiv:math/0310197 [math.CO], 2003. Index entries for linear recurrences with constant coefficients, signature (2,1,-2,-1). FORMULA G.f.: x*(1+x^2)/(1-x-x^2)^2. G.f.: Sum_{n>=1} phi(n)*fibonacci(n)*x^n/(1 - Lucas(n)*x^n + (-1)^n*x^(2*n)) = Sum_{n>=1} n*fibonacci(n)*x^n, where phi(n) = A000010(n) and Lucas(n) = A000204(n). - Paul D. Hanna, Jan 12 2012 a(n) = a(n-1) + a(n-2) + L(n-1). - Gary Detlefs, Dec 29 2012 a(n) = F(n+1) + sum(k=1..n-2, F(k)*L(n-k) ), F = A000045 and L = A000032. - Gary Detlefs, Dec 29 2012 a(n) = F(2*n)/sum(binomial(n-k,k)/(n-k), k=0..floor(n/2)). - Gary Detlefs, Jan 19 2013 a(n) = A014965(n) * A104714(n). - Michel Marcus, Oct 24 2013 a(n) = 3*A001629(n+1) - A001629(n+2) + A000045(n-1). - Ralf Stephan, Apr 26 2014 a(n) = 2*n*(F(n-2)+Floor(F(n-3)/2))+(n^3 mod 3*n), F = A000045. - Gary Detlefs, Jun 06 2014 E.g.f.: x*(exp(-x/phi)/phi+exp(x*phi)*phi)/sqrt(5), where phi=(1+sqrt(5))/2. - Vladimir Reshetnikov, Oct 28 2015 This is a divisibility sequence and is generated by  x^4-2x^3-x^2+2x+1. R. K. Guy, Nov 13 2015 MATHEMATICA Table[Fibonacci[n]*n, {n, 0, 33}] (* Zerinvary Lajos, Jul 09 2009] *) LinearRecurrence[{2, 1, -2, -1}, {0, 1, 2, 6}, 34] (* or *) CoefficientList[ Series[(x + x^3)/(-1 + x + x^2)^2, {x, 0, 35}], x] (* Robert G. Wilson v, Nov 14 2015 *) PROG (MAGMA) [n*Fibonacci(n): n in [0..60]]; // Vincenzo Librandi, Apr 23 2011 (PARI) Lucas(n)=fibonacci(n-1)+fibonacci(n+1) a(n)=polcoeff(sum(m=1, n, eulerphi(m)*fibonacci(m)*x^m/(1-Lucas(m)*x^m+(-1)^m*x^(2*m)+x*O(x^n))), n) \\ Paul D. Hanna, Jan 12 2012 (PARI) a(n)=n*fibonacci(n) \\ Charles R Greathouse IV, Jan 12 2012_ (PARI) concat(0, Vec(x*(1+x^2)/(1-x-x^2)^2 + O(x^100))) \\ Altug Alkan, Oct 28 2015 (Haskell) a045925 n = a045925_list !! (n-1) a045925_list = zipWith (*) [0..] a000045_list -- Reinhard Zumkeller, Oct 01 2012 CROSSREFS Partial sums: A014286. Cf. A000045. Cf. A099920, A023607. Sequence in context: A137829 A262196 A261667 * A128020 A116562 A140659 Adjacent sequences:  A045922 A045923 A045924 * A045926 A045927 A045928 KEYWORD nonn,easy AUTHOR EXTENSIONS Incorrect formula removed by Gary Detlefs, Oct 27 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.