



1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 5, 5, 5, 5, 5, 8, 8, 8, 8, 8, 8, 13, 13, 13, 13, 13, 13, 13, 21, 21, 21, 21, 21, 21, 21, 21, 34, 34, 34, 34, 34, 34, 34, 34, 34, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 144, 144, 144
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,4


COMMENTS

Row sums = A045925, n*Fib(n): (1, 2, 6, 12, 25, 48,...).
A104763 = A000012 * A127647.


LINKS

Reinhard Zumkeller, Rows n = 1..120 of triangle, flattened


FORMULA

A127647 * A000012 as infinite lower triangular matrices.
Partial sums of A127647 starting from the right, read by rows.
By rows, F(n) occurs n times.


EXAMPLE

First few rows of the triangle are:
1;
1, 1;
2, 2, 2;
3, 3, 3, 3;
5, 5, 5, 5, 5;
8, 8, 8, 8, 8, 8;
...


MATHEMATICA

Table[Fibonacci[n], {n, 15}, {n}] // Flatten (* Vincenzo Librandi, Jan 28 2017 *)


PROG

(Haskell)
a131410 n k = a131410_tabl !! (n1) !! (n1)
a131410_row n = a131410_tabl !! (n1)
a131410_tabl = zipWith replicate [1..] $ tail a000045_list
 Reinhard Zumkeller, Oct 07 2012


CROSSREFS

Cf. A127647, A045925, A104763, A000045.
Sequence in context: A022870 A237050 A235130 * A202453 A259529 A196052
Adjacent sequences: A131407 A131408 A131409 * A131411 A131412 A131413


KEYWORD

nonn,tabl


AUTHOR

Gary W. Adamson, Jul 08 2007


STATUS

approved



