OFFSET
0,8
COMMENTS
Also the number of permutations satisfying -k<=p(i)-i<=r and p(i)-i not in I, i=1..n, with k=2, r=2, I={0,-1}.
REFERENCES
D. H. Lehmer, Permutations with strongly restricted displacements. Combinatorial theory and its applications, II (Proc. Colloq., Balatonfured, 1969), pp. 755-770. North-Holland, Amsterdam, 1970.
LINKS
Michael De Vlieger, Table of n, a(n) for n = 0..6829
Michael A. Allen and Kenneth Edwards, Connections between two classes of generalized Fibonacci numbers squared and permanents of (0,1) Toeplitz matrices, arXiv:2107.02589 [math.CO], 2021.
Vladimir Baltic, On the number of certain types of strongly restricted permutations, Applicable Analysis and Discrete Mathematics Vol. 4, No 1 (2010), 119-135
Tomislav Došlić, Mate Puljiz, Stjepan Šebek, and Josip Žubrinić, On a variant of Flory model, arXiv:2210.12411 [math.CO], 2022.
P. L. Krapivsky and J. M. Luck, Jamming and metastability in one dimension: from the kinetically constrained Ising chain to the Riviera model, arXiv:2211.12815 [cond-mat.stat-mech], 2022.
Index entries for linear recurrences with constant coefficients, signature (0,1,1,1,0,-1).
FORMULA
Recurrence: a(n) = a(n-2)+a(n-3)+a(n-4)-a(n-6).
G.f.: -(x^2-1)/(x^6-x^4-x^3-x^2+1)
MATHEMATICA
LinearRecurrence[{0, 1, 1, 1, 0, -1}, {1, 0, 0, 1, 1, 1}, 60] (* Harvey P. Dale, Aug 08 2019 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Baltic, Jan 24 2003
STATUS
approved