login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000133 Number of Boolean functions of n variables.
(Formerly M1547 N0604)
4
2, 5, 30, 2288, 67172352, 144115192303714304, 1329227995784915891206435945914040320, 226156424291633194186662080095093570364871077725232774230036394136943198208 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The next term (a(9)) has 152 digits. - Harvey P. Dale, Sep 04 2020

REFERENCES

M. A. Harrison, The number of equivalence classes of Boolean functions under groups containing negation, IEEE Trans. Electron. Comput. 12 (1963), 559-561.

M. A. Harrison, Introduction to Switching and Automata Theory. McGraw Hill, NY, 1965, p. 153.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Sean A. Irvine, Table of n, a(n) for n = 1..11 (shortened by N. J. A. Sloane, Jan 13 2019)

Index entries for sequences related to Boolean functions

FORMULA

a(n) = (2^(2^n) + (2^n-1)*2^(2^(n-1)+1))/2^(n+1). - Sean A. Irvine, Sep 27 2009

MATHEMATICA

Table[(2^(2^n)+(2^n-1)2^(2^(n-1)+1))/2^(n+1), {n, 8}] (* Harvey P. Dale, Sep 04 2020 *)

CROSSREFS

Sequence in context: A127298 A275255 A219273 * A059086 A215168 A266478

Adjacent sequences:  A000130 A000131 A000132 * A000134 A000135 A000136

KEYWORD

nonn,easy,nice

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from Vladeta Jovovic, Feb 23 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 9 02:55 EST 2021. Contains 341961 sequences. (Running on oeis4.)