The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A003071 Sorting numbers: maximal number of comparisons for sorting n elements by list merging. (Formerly M2443) 20
 0, 1, 3, 5, 9, 11, 14, 17, 25, 27, 30, 33, 38, 41, 45, 49, 65, 67, 70, 73, 78, 81, 85, 89, 98, 101, 105, 109, 115, 119, 124, 129, 161, 163, 166, 169, 174, 177, 181, 185, 194, 197, 201, 205, 211, 215, 220, 225, 242, 245, 249, 253, 259, 263, 268, 273, 283, 287, 292, 297, 304 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS The following sequences all appear to have the same parity: A003071, A029886, A061297, A092524, A093431, A102393, A104258, A122248, A128975. - Jeremy Gardiner, Dec 28 2008 a(A092246(n)) = A230720(n); a(A230709(n)) = A230721(n+1). - Reinhard Zumkeller, Oct 28 2013 REFERENCES D. E. Knuth, Art of Computer Programming, Vol. 3, Sections 5.2.4 and 5.3.1. N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Zak Seidov, Table of n, a(n) for n = 1..10000 J.-P. Allouche and J. Shallit, The ring of k-regular sequences, Theoretical Computer Sci., 98 (1992), 163-197. J.-P. Allouche and J. Shallit, The ring of k-regular sequences, Theoretical Computer Sci., 98 (1992), 163-197. An Vinh Nguyen Dinh, Nhien Pham Hoang Bao, Terrillon Jean-Christophe, Hiroyuki Iida, Reaper Tournament System, 2018. An Vinh Nguyen Dinh, Nhien Pham Hoang Bao, Mohd Nor Akmal Khalid, Hiroyuki Iida, Simulating competitiveness and precision in a tournament structure: a reaper tournament system, Int'l J. of Information Technology (2020) Vol. 12, 1-18. Tanya Khovanova, There are no coincidences, arXiv preprint 1410.2193 [math.CO], 2014. FORMULA Let n = 2^e_1 + 2^e_2 + ... + 2^e_t, e_1 > e_2 > ... > e_t >= 0, t >= 1. Then a(n) = 1 - 2^e_t + Sum_{k=1..t} (e_k + k - 1)*2^e_k [Knuth, Problem 14, Section 5.2.4]. a(n) = a(n-1) + A061338(n) = a(n-1) + A006519(n) + A000120(n) - 1 = n + A000337(A000523(n)) + a(n - 2^A000523(n)). a(2^k) = k*2^k + 1 = A002064(k). - Henry Bottomley, Apr 27 2001 G.f.: x/(1-x)^3 + 1/(1-x)^2*Sum(k>=1, (-1+(1-x)*2^(k-1))*x^2^k/(1-x^2^k)). - Ralf Stephan, Apr 17 2003 MATHEMATICA a[1] = 0; a[n_] := a[n] = a[n-1] + 2^IntegerExponent[n-1, 2] + DigitCount[n-1, 2, 1] - 1; Table[a[n], {n, 1, 61}] (* Jean-François Alcover, Feb 10 2012, after Henry Bottomley *) PROG (Haskell) a003071 n = 1 - 2 ^ last es +    sum (zipWith (*) (zipWith (+) es [0..]) (map (2 ^) es))    where es = reverse \$ a133457_row n -- Reinhard Zumkeller, Oct 28 2013 CROSSREFS Cf. A001855, A133457. Sequence in context: A139099 A152259 A219611 * A178442 A319986 A284310 Adjacent sequences:  A003068 A003069 A003070 * A003072 A003073 A003074 KEYWORD nonn,easy,nice AUTHOR EXTENSIONS More terms from David W. Wilson STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 19 11:46 EDT 2021. Contains 343114 sequences. (Running on oeis4.)