login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A007054 Super ballot numbers: 6(2n)!/(n!(n+2)!).
(Formerly M2243)
23
3, 2, 3, 6, 14, 36, 99, 286, 858, 2652, 8398, 27132, 89148, 297160, 1002915, 3421710, 11785890, 40940460, 143291610, 504932340, 1790214660, 6382504440, 22870640910, 82334307276, 297670187844, 1080432533656, 3935861372604, 14386251913656, 52749590350072 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,1
COMMENTS
Hankel transform is 2n+3. The Hankel transform of a(n+1) is n+2. The sequence a(n)-2*0^n has Hankel transform A110331(n). - Paul Barry, Jul 20 2008
Number of pairs of Dyck paths of total length 2*n with heights differing by at most 1 (Gessel/Xin, p. 2). - Joerg Arndt, Sep 01 2012
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
E. Allen and I. Gheorghiciuc, A Weighted Interpretation for the Super Catalan Numbers, J. Int. Seq. 17 (2014) # 14.10.7.
David Callan, A combinatorial interpretation for a super-Catalan recurrence, arXiv:math/0408117 [math.CO], 2004.
David Callan, A Combinatorial Interpretation for a Super-Catalan Recurrence, Journal of Integer Sequences, Vol. 8 (2005), Article 05.1.8.
David Callan, A variant of Touchard's Catalan number identity, arXiv preprint arXiv:1204.5704 [math.CO], 2012. - From N. J. A. Sloane, Oct 10 2012
Ira M. Gessel, Super ballot numbers, J. Symbolic Comp., 14 (1992), 179-194
Ira M. Gessel, Rational Functions With Nonnegative Integer Coefficients, 50th Séminaire Lotharingien de Combinatoire, 2003.
Ira M. Gessel and Guoce Xin, A Combinatorial Interpretation of the Numbers 6(2n)!/n!(n+2)!, Journal of Integer Sequences, Vol. 8 (2005), Article 05.2.3.
Ira M. Gessel and Guoce Xin, A Combinatorial Interpretation of The Numbers 6(2n)! /n! (n+2)!, arXiv:math/0401300v2 [math.CO], 2004.
N. Pippenger and K. Schleich, Topological characteristics of random triangulated surfaces (section 7), Random Structures Algorithms 28 (2006) 247-288; arXiv:gr-qc/0306049v1.
FORMULA
G.f.: c(x)*(4-c(x)), where c(x) = g.f. for Catalan numbers A000108; Convolution of Catalan numbers with negative Catalan numbers but -C(0)=-1 replaced by 3. - Wolfdieter Lang
E.g.f. in Maple notation: exp(2*x)*(4*x*(BesselI(0, 2*x)-BesselI(1, 2*x))-BesselI(1, 2*x))/x. Integral representation as n-th moment of a positive function on [0, 4], in Maple notation: a(n)=int(x^n*(4-x)^(3/2)/x^(1/2), x=0..4)/(2*Pi), n=0, 1, ... This representation is unique. - Karol A. Penson, Oct 10 2001
E.g.f.: Sum_{n>=0} a(n)*x^(2*n) = 3*BesselI(2, 2x).
a(n) = A000108(n)*6/(n+2). - Philippe Deléham, Oct 30 2007
a(n+1) = 2*(A000108(n+2) - A000108(n+1))/(n+1). - Paul Barry, Jul 20 2008
G.f.: ((6-4*sqrt(1-4*x))*x+sqrt(1-4*x)-1)/(2*x^2) - Harvey P. Dale, Oct 05 2011
a(n) = 4*A000108(n) - A000108(n+1) (Gessel/Xin, p. 2). - Joerg Arndt, Sep 01 2012
D-finite with recurrence (n+2)*a(n) +2*(-2*n+1)*a(n-1)=0. - R. J. Mathar, Dec 03 2012
G.f.: 1/(x^2*G(0)) + 3/x - (1/2)/x^2, where G(k) = 1 + 1/(1 - 2*x*(2*k+3)/(2*x*(2*k+3) + (k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 06 2013
G.f.: 3/x - 1/(2*x^2) + G(0)/(4*x^2), where G(k) = 1 + 1/(1 - 2*x*(2*k-3)/(2*x*(2*k-3) + (k+1)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 18 2013
0 = a(n)*(+16*a(n+1) - 14*a(n+2)) + a(n+1)*(+6*a(n+1) + a(n+2)) for all n in Z. - Michael Somos, Sep 18 2014
A002421(n+2) = 2*a(n) for all n in Z. - Michael Somos, Sep 18 2014
a(n) = 3*(2*n)!*[x^(2*n)]hypergeometric([],[3],x^2). - Peter Luschny, Feb 01 2015
a(n) = 6*4^n*Gamma(1/2+n)/(sqrt(Pi)*Gamma(3+n)). - Peter Luschny, Dec 14 2015
a(n) = (-4)^(2 + n)*binomial(3/2, 2 + n)/2. - Peter Luschny, Nov 04 2021
From Amiram Eldar, May 16 2022: (Start)
Sum_{n>=0} 1/a(n) = 1 + 20*Pi/(81*sqrt(3)).
Sum_{n>=0} (-1)^n/a(n) = 3/25 - 8*log(phi)/(25*sqrt(5)), where phi is the golden ratio (A001622). (End)
MAPLE
seq(3*(2*n)!/(n!)^2/binomial(n+2, n), n=0..22); # Zerinvary Lajos, Jun 28 2007
A007054 := n -> 6*4^n*GAMMA(1/2+n)/(sqrt(Pi)*GAMMA(3+n)):
seq(A007054(n), n=0..28); # Peter Luschny, Dec 14 2015
MATHEMATICA
Table[6(2n)!/(n!(n+2)!), {n, 0, 30}] (* or *) CoefficientList[Series[ (-1+Sqrt[1-4*x]+(6-4*Sqrt[1-4*x])*x)/(2*x^2), {x, 0, 30}], x] (* Harvey P. Dale, Oct 05 2011 *)
PROG
(Magma) [6*Factorial(2*n)/(Factorial(n)*Factorial(n+2)): n in [0..30]]; // Vincenzo Librandi, Aug 20 2011
(PARI) a(n)=6*(2*n)!/(n!*(n+2)!); /* Joerg Arndt, Sep 01 2012 */
(Sage)
def A007054(n): return (-4)^(2 + n)*binomial(3/2, 2 + n)/2
print([A007054(n) for n in range(29)]) # Peter Luschny, Nov 04 2021
CROSSREFS
Sequence in context: A058644 A049923 A184881 * A084388 A368155 A136389
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Corrected and extended by Vincenzo Librandi, Aug 20 2011
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 24 18:17 EDT 2024. Contains 371962 sequences. (Running on oeis4.)