

A084388


Solutions k for n^3 + m = k^2.


0



3, 2, 3, 6, 47, 4, 5, 19, 12, 7, 5, 6, 83, 6, 10, 8, 37, 16, 7, 13, 7, 9, 28, 8, 11, 8, 24, 53, 1874, 14, 9, 302, 9, 33, 10, 11, 77, 21, 10, 15, 926, 13, 59, 48, 18, 29, 11, 12, 386, 11, 43, 71, 65, 16, 14, 12, 17322, 13, 12, 19, 97, 1076, 111, 34, 13, 190, 17, 13, 14, 30, 54
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS

Table of n, a(n) for n=1..71.
Cino Hilliard, Proof that n^3+7 <> k^2 for all integers n,k.


PROG

(PARI) n3pmsq3(n, m1) = { for(m=1, m1, for(x=1, n, y=x^3+m; if(issquare(y), print1(floor(sqrt(y))", "); break) ) ) }


CROSSREFS

Cf. sequences for n^3+7, n^3+17, n^3+3, n^3+2, n^3+5.
Sequence in context: A049923 A184881 A007054 * A136389 A332057 A275330
Adjacent sequences: A084385 A084386 A084387 * A084389 A084390 A084391


KEYWORD

easy,nonn


AUTHOR

Cino Hilliard, Jun 23 2003


STATUS

approved



