login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A007053 Number of primes <= 2^n.
(Formerly M1018)
74
0, 1, 2, 4, 6, 11, 18, 31, 54, 97, 172, 309, 564, 1028, 1900, 3512, 6542, 12251, 23000, 43390, 82025, 155611, 295947, 564163, 1077871, 2063689, 3957809, 7603553, 14630843, 28192750, 54400028, 105097565, 203280221, 393615806, 762939111, 1480206279, 2874398515, 5586502348, 10866266172, 21151907950, 41203088796, 80316571436, 156661034233, 305761713237, 597116381732, 1166746786182, 2280998753949, 4461632979717, 8731188863470, 17094432576778, 33483379603407, 65612899915304, 128625503610475 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Conjecture: The number 4 is the only perfect power in this sequence. In other words, it is impossible to have a(n) = x^m for some integers n > 3, m > 1 and x > 1. - Zhi-Wei Sun, Sep 30, 2015

REFERENCES

Jens Franke et al., pi(10^24), Posting to the Number Theory Mailing List, Jul 29 2010

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Charles R Greathouse IV and Douglas B. Staple, Table of n, a(n) for n = 0..86 [a(0)-a(75) from Tomás Oliveira e Silva, a(76)-a(77) from Jens Franke et al., Jul 29 2010, a(78)-a(80) from Jens Franke et al. on the RH, verified unconditionally by Douglas B. Staple, and a(81)-a(86) from Douglas B. Staple]

Andrew R. Booker, The Nth Prime Page

S. W. Golomb, Letter to N. J. A. Sloane, Jul. 1991

Thomas R. Nicely, Some Results of Computational Research in Prime Numbers

Tomás Oliveira e Silva, Tables of values of pi(x) and of pi2(x)

Tomás Oliveira e Silva, Computing pi(x): the combinatorial method, Revista Do Detua, Vol. 4, No 6, March 2006.

Douglas B. Staple, The combinatorial algorithm for computing pi(x), preprint, 2015.

Index entries for sequences related to numbers of primes in various ranges

FORMULA

a(n) = A060967(2n). - R. J. Mathar, Sep 15 2012

EXAMPLE

pi(2^3)=4 since first 4 primes are 2,3,5,7 all <=2^3=8.

MATHEMATICA

Table[PrimePi[2^n], {n, 0, 46}] (* Robert G. Wilson v *)

PROG

(PARI) a(n) = primepi(1<<n); \\ John W. Nicholson, May 16 2011

CROSSREFS

Cf. A006880, A036378.

Sequence in context: A131298 A168445 A185192 * A005684 A260697 A018167

Adjacent sequences:  A007050 A007051 A007052 * A007054 A007055 A007056

KEYWORD

nonn,nice,changed

AUTHOR

N. J. A. Sloane, Mira Bernstein, Robert G. Wilson v, S. W. Golomb

EXTENSIONS

More terms from Jud McCranie

Extended to n = 52 by Warren D. Smith, Dec 11 2000, computed with Meissel-Lehmer-Legendre inclusion exclusion formula code he wrote back in 1985, recently re-run.

Extended to n = 86 by Douglas B. Staple, Dec 18 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 21 16:27 EST 2017. Contains 295003 sequences.