login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A040027 The Gould numbers. 18
1, 1, 3, 9, 31, 121, 523, 2469, 12611, 69161, 404663, 2512769, 16485691, 113842301, 824723643, 6249805129, 49416246911, 406754704841, 3478340425563, 30845565317189, 283187362333331, 2687568043654521, 26329932233283223 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Number of permutations beginning with 21 and avoiding 1-23. - Ralf Stephan, Apr 25 2004

Originally defined as main diagonal of an array of binomial recurrence coefficients (see Gould and Quaintance). Also second-from-right diagonal of triangle A121207.

Starting (1, 3, 9, 31, 121,...) = row sums of triangle A153868. - Gary W. Adamson, Jan 03 2009

Equals eigensequence of triangle A074909 (reflected). - Gary W. Adamson, Apr 10 2009

The divergent series g(x=1,m) = 1^m*1! - 2^m*2! + 3^m*3! - 4^m*4! + ..., m=>-1, is related to the sequence given above. For m=-1 this series dates back to Euler. We discovered that g(x=1,m) = (-1)^m * (A040027(m) - A000110(m+1) * A073003) with A073003 Gompertz's constant and A000110 the Bell numbers, see A163940; A040027(m = -1) = 0. - Johannes W. Meijer, Oct 16 2009

Compare the o.g.f. to the o.g.f. B(x) of the Bell numbers, where B(x) = 1 + x*B(x/(1-x))/(1-x). - Paul D. Hanna, Mar 23 2012

a(n) is the number of set partitions of {1,2,...,n+1} in which the last block is a singleton: the blocks are arranged in order of their least element. An example is given below. - Peter Bala, Dec 17 2014

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 0..500

W. Asakly, A. Blecher, C. Brennan, A. Knopfmacher, T. Mansour, S. Wagner, Set partition asymptotics and a conjecture of Gould and Quaintance, Journal of Mathematical Analysis and Applications, Volume 416, Issue 2, 15 August 2014, Pages 672-682.

Branko Dragovich, On Summation of p-Adic Series, arXiv:1702.02569 [math.NT], 2017.

Branko Dragovich, Andrei Yu. Khrennikov, Natasa Z. Misic, Summation of p-Adic Functional Series in Integer Points, arXiv:1508.05079 [math.NT], 2015.

B. Dragovich, N. Z. Misic, p-Adic invariant summation of some p-adic functional series, P-Adic Numbers, Ultrametric Analysis, and Applications, October 2014, Volume 6, Issue 4, pp 275-283.

H. W. Gould and Jocelyn Quaintance, A linear binomial recurrence and the Bell numbers and polynomials. Applicable Analysis and Discrete Mathematics, 1 (2007), 371-385.

R. K. Guy, Letters to N. J. A. Sloane, June-August 1968 [The letter gives the g.f. for this sequence as e^{e^x} Integral_{0..x} e^{e^t-1} dt but the correct g.f. is e^{e^x-1} Integral_0^x e^{1-e^t} dt. - Don Knuth, Feb 01 2018]

S. Kitaev, Generalized pattern avoidance with additional restrictions, Sem. Lothar. Combinat. B48e (2003).

S. Kitaev and T. Mansour, Simultaneous avoidance of generalized patterns, arXiv:math/0205182 [math.CO], 2002.

Don Knuth, Email to N. J. A. Sloane, Jan 29 2018

FORMULA

a(n) = b(n-2), n>1, b(n) = Sum_{k = 1..n} binomial(n, k-1)*b(n-k), b(0) = 1. - Vladeta Jovovic, Apr 28 2001

E.g.f. satisfies A'(x) = exp(x)*A(x)+1. - N. J. A. Sloane

With offset 0, e.g.f.: x + exp(exp(x)) * int[0..x, t*exp(-exp(t)+t) dt] (fits the recurrence up to n=215). - Ralf Stephan, Apr 25 2004

Recurrence : a(1)=1, a(2)=1, for n>2, a(n)=n-1+sum(j=2, n-1, binomial(n-1, j)*a(j)) [gives a(n+1)]. - Jon Perry, Apr 26 2005

O.g.f. satisfies: A(x) = 1 + x*A( x/(1-x) ) / (1-x)^2. - Paul D. Hanna, Mar 23 2012

From Peter Bala, Dec 17 2014: (Start)

Starting from A(x) = 1 + O(x) (big Oh notation) we can get a series expansion for the o.g.f. by repeatedly applying the above functional equation of Hanna: A(x) = 1 + O(x) = 1 + x/(1-x)^2 + O(x^2) = 1 + x/(1-x)^2 + x^2/((1-x)*(1-2*x)^2) + O(x^3) = ... = 1 + x/(1-x)^2 + x^2/((1-x)*(1-2*x)^2) + x^3/((1-x)*(1-2*x)*(1-3*x)^2) + x^4/((1-x)*(1-2*x)*(1-3*x)*(1-4*x)^2) + ....

a(n) = sum {k = 0..n} ( sum {j = k..n} Stirling2(j,k)*k^(n-j) ).

Row sums of A108458. First column of A124496. (End)

EXAMPLE

a(3) = 9: Arranging the blocks of the 15 set partitions of {1,2,3,4} in order of their least element we find 9 set partitions for which the last block is a singleton, namely, 123|4, 124|3, 134|2, 1|24|3, 1|23|4, 12|3|4, 13|2|4, 14|2|3, and 1|2|3|4. - Peter Bala, Dec 17 2014

MAPLE

A040027 := proc(n)

    option remember;

    if n = 0 then

        1;

    else

        add(binomial(n, k-1)*procname(n-k), k=1..n) ;

    end if;

end proc: # Johannes W. Meijer, Oct 16 2009

MATHEMATICA

a[0] = a[1] = 1; a[n_] := a[n] = Sum[Binomial[n, k + 1]*a[k], {k, 0, n - 1}]; Table[a[n], {n, 0, 22}]  (* Jean-Fran├žois Alcover, Jul 02 2013 *)

Rest[CoefficientList[Assuming[Element[x, Reals], Series[E^E^x*(ExpIntegralEi[-E^x] - ExpIntegralEi[-1]), {x, 0, 20}]], x] * Range[0, 20]!] (* Vaclav Kotesovec, Feb 28 2014 *)

PROG

(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+x*subst(A, x, x/(1-x+x*O(x^n)))/(1-x)^2); polcoeff(A, n)} /* Paul D. Hanna, Mar 23 2012 */

(Haskell)

a040027 n = head $ a046936_row (n + 1)  -- Reinhard Zumkeller, Jan 01 2014

(Python)

# The function Gould_diag is defined in A121207.

A040027_list = lambda size: Gould_diag(2, size)

print(A040027_list(24)) # Peter Luschny, Apr 24 2016

CROSSREFS

Left-hand border of triangle A046936. Cf. also A011971, A298804.

Cf. A153868. - Gary W. Adamson, Jan 03 2009

Cf. A074909. - Gary W. Adamson, Apr 10 2009

Row sums of A163940. - Johannes W. Meijer, Oct 16 2009

Cf. A108458 (row sums), A124496 (column 1).

Sequence in context: A066571 A087648 A086616 * A182968 A071603 A090595

Adjacent sequences:  A040024 A040025 A040026 * A040028 A040029 A040030

KEYWORD

easy,nonn,nice

AUTHOR

Henry Gould

EXTENSIONS

Entry revised by N. J. A. Sloane, Dec 11 2006

Gould reference updated by Johannes W. Meijer, Aug 02 2009

Don Knuth, Jan 29 2018, suggested that this sequence should be named after H. W. Gould. - N. J. A. Sloane, Jan 30 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 21 20:51 EDT 2018. Contains 316428 sequences. (Running on oeis4.)