login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A014127 Primes p such that p^2 divides 3^(p-1) - 1. 23
11, 1006003 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Sometimes called Mirimanoff primes. - Matthijs Coster, Jun 30 2008

Dorais and Klyve proved that there are no further terms up to 9.7*10^14.

These primes are so named after the celebrated result of Mirimanoff in 1910 (see below) that for a failure of the first case of Fermat's Last Theorem, the exponent p must satisfy the congruence stated in the definition. Lerch (see below) showed that these primes also divide the numerator of the harmonic number H(floor((p-1)/3)). This is analogous to the fact that Wieferich primes (A001220) divide the numerator of the harmonic number H((p-1)/2). - John Blythe Dobson, Mar 02 2014

REFERENCES

Paulo Ribenboim, 13 Lectures on Fermat's Last Theorem, Springer, 1979, pp. 23, 152-153.

Alf van der Poorten, Notes on Fermat's Last Theorem, Wiley, 1996, p. 21.

LINKS

Table of n, a(n) for n=1..2.

C. K. Caldwell, Fermat Quotient, The Prime Glossary.

F. G. Dorais and D. Klyve, A Wieferich prime search up to  p < 6.7*10^15, J. Integer Seq. 14 (2011), Art. 11.9.2, 1-14.

W. Keller, J. Richstein, Solutions of the congruence a^(p-1) == 1 (mod p^r), Math. Comp. 74 (2005), 927-936.

M. Lerch, Zur Theorie des Fermatschen Quotienten..., Mathematische Annalen 60 (1905), 471-490.

D. Mirimanoff, Sur le dernier théorème de Fermat, C. R. Acad. Sci. Paris, 150 (1910), 204-206. Revised as Sur le dernier théorème de Fermat, Journal für die reine und angewandte Mathematik 139 (1911), 309-324.

Planet Math, Wieferich Primes

PROG

(PARI)

N=10^9; default(primelimit, N);

forprime(n=2, N, if(Mod(3, n^2)^(n-1)==1, print1(n, ", ")));

\\ Joerg Arndt, May 01 2013

(Python)

from sympy import prime

from gmpy2 import powmod

A014127_list = [p for p in (prime(n) for n in range(1, 10**7)) if powmod(3, p-1, p*p) == 1] # Chai Wah Wu, Dec 03 2014

CROSSREFS

Cf. A001220, A039951, A096082.

Sequence in context: A243130 A112854 A211238 * A049192 A156670 A116061

Adjacent sequences:  A014124 A014125 A014126 * A014128 A014129 A014130

KEYWORD

nonn,hard,bref,more

AUTHOR

N. J. A. Sloane

EXTENSIONS

Edited by Max Alekseyev, Oct 20 2010

Updated by Max Alekseyev, Jan 29 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 22 21:10 EST 2014. Contains 252372 sequences.