This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A014127 Mirimanoff primes: primes p such that p^2 divides 3^(p-1) - 1. 36
 11, 1006003 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Dorais and Klyve proved that there are no further terms up to 9.7*10^14. These primes are so named after the celebrated result of Mirimanoff in 1910 (see below) that for a failure of the first case of Fermat's Last Theorem, the exponent p must satisfy the criterion stated in the definition. Lerch (see below) showed that these primes also divide the numerator of the harmonic number H(floor(p/3)). This is analogous to the fact that Wieferich primes (A001220) divide the numerator of the harmonic number H((p-1)/2). - John Blythe Dobson, Mar 02 2014, Apr 09 2015 REFERENCES Paulo Ribenboim, 13 Lectures on Fermat's Last Theorem, Springer, 1979, pp. 23, 152-153. Alf van der Poorten, Notes on Fermat's Last Theorem, Wiley, 1996, p. 21. LINKS Amir Akbary and Sahar Siavashi, The Largest Known Wieferich Numbers, INTEGERS, 18(2018), A3. See Table 1 p. 5. C. K. Caldwell, Fermat Quotient, The Prime Glossary. F. G. Dorais and D. Klyve, A Wieferich prime search up to  p < 6.7*10^15, J. Integer Seq. 14 (2011), Art. 11.9.2, 1-14. W. Keller, J. Richstein, Solutions of the congruence a^(p-1) == 1 (mod p^r), Math. Comp. 74 (2005), 927-936. M. Lerch, Zur Theorie des Fermatschen Quotienten..., Mathematische Annalen 60 (1905), 471-490. D. Mirimanoff, Sur le dernier théorème de Fermat, C. R. Acad. Sci. Paris, 150 (1910), 204-206. Revised as Sur le dernier théorème de Fermat, Journal für die reine und angewandte Mathematik 139 (1911), 309-324. Planet Math, Wieferich Primes MATHEMATICA Select[Prime[Range], PowerMod[3, # - 1, #^2] == 1 &] (* Robert Price, May 17 2019 *) PROG (PARI) N=10^9; default(primelimit, N); forprime(n=2, N, if(Mod(3, n^2)^(n-1)==1, print1(n, ", "))); \\ Joerg Arndt, May 01 2013 (Python) from sympy import prime from gmpy2 import powmod A014127_list = [p for p in (prime(n) for n in range(1, 10**7)) if powmod(3, p-1, p*p) == 1] # Chai Wah Wu, Dec 03 2014 CROSSREFS Cf. A001220, A039951, A096082. Sequence in context: A253632 A112854 A211238 * A049192 A156670 A116061 Adjacent sequences:  A014124 A014125 A014126 * A014128 A014129 A014130 KEYWORD nonn,hard,bref,more AUTHOR EXTENSIONS Edited by Max Alekseyev, Oct 20 2010 Updated by Max Alekseyev, Jan 29 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 23 11:24 EDT 2019. Contains 326222 sequences. (Running on oeis4.)