This site is supported by donations to The OEIS Foundation.



Many excellent designs for a new banner were submitted. We will use the best of them in rotation.

(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A014127 Primes p such that p^2 divides 3^(p-1) - 1. 16
11, 1006003 (list; graph; refs; listen; history; text; internal format)



Sometimes called Mirimanoff primes. - Matthijs Coster, Jun 30 2008

Dorais and Klyve proved that there are no further terms up to 9.7*10^14.

These primes are so named after the celebrated result of Mirimanoff in 1910 (see below) that for a failure of the first case of Fermat's Last Theorem, the exponent p must satisfy the congruence stated in the definition. Lerch (see below) showed that these primes also divide the numerator of the harmonic number H(floor((p-1)/3)). This is analogous to the fact that Wieferich primes (A001220) divide the numerator of the harmonic number H((p-1)/2). - John Blythe Dobson, Mar 02 2014


Paulo Ribenboim, 13 Lectures on Fermat's Last Theorem, Springer, 1979, pp. 23, 152-153.

Alf van der Poorten, Notes on Fermat's Last Theorem, Wiley, 1996, p. 21.


Table of n, a(n) for n=1..2.

C. K. Caldwell, Fermat Quotient, The Prime Glossary.

F. G. Dorais and D. Klyve, A Wieferich prime search up to  p < 6.7*10^15, J. Integer Seq. 14 (2011), Art. 11.9.2, 1-14.

W. Keller, J. Richstein, Solutions of the congruence a^(p-1) == 1 (mod p^r), Math. Comp. 74 (2005), 927-936.

M. Lerch, Zur Theorie des Fermatschen Quotienten..., Mathematische Annalen 60 (1905), 471-490.

D. Mirimanoff, Sur le dernier théorème de Fermat, C. R. Acad. Sci. Paris, 150 (1910), 204-206. Revised as Sur le dernier théorème de Fermat, Journal für die reine und angewandte Mathematik 139 (1911), 309-324.

Planet Math, Wieferich Primes



N=10^9; default(primelimit, N);

forprime(n=2, N, if(Mod(3, n^2)^(n-1)==1, print1(n, ", ")));

\\ Joerg Arndt, May 01 2013


Cf. A001220, A039951, A096082.

Sequence in context: A219013 A112854 A211238 * A049192 A156670 A116061

Adjacent sequences:  A014124 A014125 A014126 * A014128 A014129 A014130




N. J. A. Sloane


Edited by Max Alekseyev, Oct 20 2010

Updated by Max Alekseyev, Jan 29 2012



Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified April 24 15:35 EDT 2014. Contains 240985 sequences.