login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A064150 Numbers divisible by the sum of their ternary digits. 3
1, 2, 3, 4, 6, 8, 9, 10, 12, 15, 16, 18, 20, 21, 24, 25, 27, 28, 30, 32, 33, 35, 36, 39, 40, 45, 48, 54, 56, 57, 60, 63, 64, 65, 72, 75, 77, 78, 80, 81, 82, 84, 87, 88, 90, 92, 93, 95, 96, 99, 100, 105, 108, 111, 112, 115, 117, 120, 132, 133, 135, 136, 144, 145, 150, 152 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

a(n) mod A053735(a(n)) = 0. - Reinhard Zumkeller, Nov 25 2009

REFERENCES

Paul Dahlenberg and T. Edgar, Consecutive factorial base Niven numbers, Fib. Q., 56:2 (2018), 163-166.

LINKS

Harry J. Smith and R. Zumkeller, Table of n, a(n) for n = 1..10000, first 1000 terms from Harry J. Smith

MATHEMATICA

Select[Range[200], IntegerQ[#/(Plus@@IntegerDigits[#, 3])] &] (* Alonso del Arte, May 27 2011 *)

PROG

(PARI) baseE(x, b)= { local(d, e, f); e=0; f=1; while (x>0, d=x-b*(x\b); x\=b; e+=d*f; f*=10); return(e) } SumD(x)= { local(s); s=0; while (x>9, s+=x-10*(x\10); x\=10); return(s + x) } { n=-1; for (m=1, 10^9, if (m%(SumD(baseE(m, 3))) == 0, write("b064150.txt", n++, " ", m); if (n==1000, break)) ) } \\ Harry J. Smith, Sep 09 2009

(Haskell)

a064150 n = a064150_list !! (n-1)

a064150_list = filter (\x -> x `mod` a053735 x == 0) [1..]

-- Reinhard Zumkeller, Oct 28 2012

CROSSREFS

Cf. A005349 (Decimal), A049445 (Binary).

Sequence in context: A263079 A085451 A240911 * A259227 A196149 A240163

Adjacent sequences:  A064147 A064148 A064149 * A064151 A064152 A064153

KEYWORD

base,easy,nonn,nice

AUTHOR

Len Smiley, Sep 11 2001

EXTENSIONS

Corrected and extended by Vladeta Jovovic, Sep 22 2001

Offset corrected by Reinhard Zumkeller, Oct 28 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 20 05:19 EDT 2019. Contains 325168 sequences. (Running on oeis4.)