login
A090850
Clark's triangle with f=6 read by row.
1
0, 6, 1, 12, 7, 1, 18, 19, 8, 1, 24, 37, 27, 9, 1, 30, 61, 64, 36, 10, 1, 36, 91, 125, 100, 46, 11, 1, 42, 127, 216, 225, 146, 57, 12, 1, 48, 169, 343, 441, 371, 203, 69, 13, 1, 54, 217, 512, 784, 812, 574, 272, 82, 14, 1, 60, 271, 729, 1296, 1596, 1386, 846, 354, 96, 15, 1
OFFSET
0,2
LINKS
Vincenzo Librandi, Rows n = 0..100, flattened
Robert W. Donley Jr, Binomial arrays and generalized Vandermonde identities, arXiv:1905.01525 [math.CO], 2019.
Eric Weisstein's World of Mathematics, Clark's Triangle
FORMULA
c(n, k) = 6*binomial(n, k+1) + binomial(n-1, k-1). - Max Alekseyev, Nov 06 2005
EXAMPLE
Triangle starts
0;
6, 1;
12, 7, 1;
18, 19, 8, 1;
...
MATHEMATICA
Join[{0}, Rest[Flatten[Table[6*Binomial[n, k+1]+Binomial[n-1, k-1], {n, 0, 10}, {k, 0, n}]]]] (* Harvey P. Dale, Mar 29 2014 *)
PROG
(Python)
from operator import add
f = 6
A090850_list = blist = [0]
for _ in range(20):
blist = [blist[0]+f]+list(map(add, blist[:-1], blist[1:]))+[1]
A090850_list.extend(blist) # Chai Wah Wu, Sep 18 2014
CROSSREFS
Sequence in context: A162933 A304252 A229085 * A163945 A013613 A122508
KEYWORD
nonn,tabl
AUTHOR
Eric W. Weisstein, Dec 09 2003
STATUS
approved