login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A126568 Binomial transform of A026641. 7
1, 2, 7, 29, 127, 572, 2623, 12182, 57115, 269750, 1281457, 6116585, 29310721, 140925176, 679493983, 3284357789, 15909178627, 77208716606, 375330428293, 1827310839359, 8908332730957, 43481990059796, 212472526927393 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The Hankel transform of this sequence is 3^n (see A000244).

Row sums of triangle in A110877. - Philippe Deléham, Oct 10 2007

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

FORMULA

a(n) = Sum_{0<=k<=n} A110877(n,k). - Philippe Deléham, Oct 10 2007

Conjecture: 4*n*a(n) +2*(2*n-7)*a(n-1) +(-163*n+267)*a(n-2) +10*(23*n-58)*a(n-3) +75*(-n+3)*a(n-4) = 0. - R. J. Mathar, Jun 30 2013

G.f.: -(-11*x^4+sqrt(5*x^2-6*x+1)*(5*x^3-3*x^2-1)+12*x^3+x^2-3*x+1)/(-10*x^5+sqrt(5*x^2-6*x+1)*(4*x^4-8*x^3-3*x^2+7*x-2)+32*x^4-31*x^3+20*x^2-13*x+2). - Vladimir Kruchinin, Apr 08 2014

MATHEMATICA

CoefficientList[Series[-(- 11 x^4 + Sqrt[5 x^2 - 6 x + 1] (5 x^3 - 3 x^2 - 1) + 12 x^3 + x^2 - 3 x + 1)/(- 10 x^5 + Sqrt[5 x^2 - 6 x + 1] (4 x^4 - 8 x^3 - 3 x^2 + 7 x - 2) + 32 x^4 - 31 x^3 + 20 x^2 - 13 x + 2), {x, 0, 50}], x] (* Vincenzo Librandi, Apr 09 2014 *)

CROSSREFS

Sequence in context: A052961 A150662 A278391 * A150663 A054321 A150664

Adjacent sequences:  A126565 A126566 A126567 * A126569 A126570 A126571

KEYWORD

nonn

AUTHOR

Philippe Deléham, Mar 13 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 24 05:48 EST 2018. Contains 299597 sequences. (Running on oeis4.)