login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A096014 a(n) = (smallest prime factor of n) * (least prime that is not a factor of n), with a(1)=2. 6
2, 6, 6, 6, 10, 10, 14, 6, 6, 6, 22, 10, 26, 6, 6, 6, 34, 10, 38, 6, 6, 6, 46, 10, 10, 6, 6, 6, 58, 14, 62, 6, 6, 6, 10, 10, 74, 6, 6, 6, 82, 10, 86, 6, 6, 6, 94, 10, 14, 6, 6, 6, 106, 10, 10, 6, 6, 6, 118, 14, 122, 6, 6, 6, 10, 10, 134, 6, 6, 6, 142, 10, 146, 6, 6, 6, 14, 10, 158, 6, 6, 6 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Robert Israel, Table of n, a(n) for n = 1..10000

FORMULA

a(n) = A020639(n)*A053669(n);

A096015(n) = a(n)/2.

If n (mod 6) = 2, 3 or 4, then a(n) = 6. If n (mod 6) = 0, 1 or 5, then a(n) belongs to A001747 less the first three terms or belongs to A073582 less the first two terms. - Robert G. Wilson v, Jun 15 2004

MAPLE

f:= proc(n) local p;

p:= 3;

if n::even then

  while type(n/p, integer) do p:= nextprime(p) od;

else

  while not type(n/p, integer) do p:= nextprime(p) od:

fi;

2*p;

end proc:

f(1):= 2:

map(f, [$1..100]); # Robert Israel, Jun 22 2018

MATHEMATICA

PrimeFactors[n_] := Flatten[ Table[ #[[1]], {1} ] & /@ FactorInteger[n]]; f[1] = 2; f[n_] := Block[ {k = 1}, While[ Mod[ n, Prime[k]] == 0, k++ ]; Prime[k]PrimeFactors[n][[1]]]; Table[ f[n], {n, 83}] (* Robert G. Wilson v, Jun 15 2004 *)

PROG

(PARI) dnd(n) = forprime(p=2, , if (n % p, return(p)));

lpf(n) = if (n==1, 1, forprime(p=2, , if (!(n % p), return(p))));

a(n) = dnd(n)*lpf(n); \\ Michel Marcus, Jun 22 2018

CROSSREFS

Cf. A020639, A053669, A096015.

Sequence in context: A048765 A103643 A079892 * A071888 A117217 A260930

Adjacent sequences:  A096011 A096012 A096013 * A096015 A096016 A096017

KEYWORD

nonn,look

AUTHOR

Reinhard Zumkeller, Jun 15 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 17 10:25 EST 2021. Contains 340214 sequences. (Running on oeis4.)