The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A033484 a(n) = 3*2^n - 2. 61
 1, 4, 10, 22, 46, 94, 190, 382, 766, 1534, 3070, 6142, 12286, 24574, 49150, 98302, 196606, 393214, 786430, 1572862, 3145726, 6291454, 12582910, 25165822, 50331646, 100663294, 201326590, 402653182, 805306366, 1610612734, 3221225470 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Number of nodes in rooted tree of height n in which every node (including the root) has valency 3. Pascal diamond numbers: reflect Pascal's n-th triangle vertically and sum all elements. E.g., a(3)=1+(1+1)+(1+2+1)+(1+1)+1. - Paul Barry, Jun 23 2003 Number of 2 X n binary matrices avoiding simultaneously the right angled numbered polyomino patterns (ranpp) (00;1), (10;0) and (11;0). An occurrence of a ranpp (xy;z) in a matrix A=(a(i,j)) is a triple (a(i1,j1), a(i1,j2), a(i2,j1)) where i10, with a(0)=1. a(n) = A007283(n) - 2. G.f. is equivalent to (1-2*x-3*x^2)/((1-x)*(1-2*x)*(1-3*x)). - Paul Barry, Apr 28 2004 From Reinhard Zumkeller, Oct 09 2004: (Start) A099257(a(n)) = A099258(a(n)) = a(n). a(n) = 2*A055010(n) = (A068156(n) - 1)/2. (End) Row sums of triangle A130452. - Gary W. Adamson, May 26 2007 Row sums of triangle A131110. - Gary W. Adamson, Jun 15 2007 Binomial transform of (1, 3, 3, 3,...). - Gary W. Adamson, Oct 17 2007 Row sums of triangle A051597 (a triangle generated from Pascal's rule given right and left borders = 1, 2, 3,...). - Gary W. Adamson, Nov 04 2007 Equals A132776 * [1/1, 1/2, 1/3,...]. - Gary W. Adamson, Nov 16 2007 a(n) = Sum_{k=0..n} A112468(n,k)*3^k. - Philippe Deléham, Feb 23 2014 a(n) = -(2^n) * A036563(1-n) for all n in Z. - Michael Somos, Jul 04 2017 E.g.f.: 3*exp(2*x) - 2*exp(x). - G. C. Greubel, Nov 18 2019 EXAMPLE Binary: 1, 100, 1010, 10110, 101110, 1011110, 10111110, 101111110, 1011111110, 10111111110, 101111111110, 1011111111110, 10111111111110, G.f. = 1 + 4*x + 10*x^2 + 22*x^3 + 46*x^4 + 94*x^5 + 190*x^6 + 382*x^7 + ... MAPLE with(combinat):a:=n->stirling2(n, 2)+stirling2(n+1, 2): seq(a(n), n=1..35); # Zerinvary Lajos, Oct 07 2007 a:=0:a:=1:for n from 2 to 50 do a[n]:=(a[n-1]+1)*2 od: seq(a[n], n=1..35); # Zerinvary Lajos, Feb 22 2008 MATHEMATICA Table[3 2^n - 2, {n, 0, 35}] (* Vladimir Joseph Stephan Orlovsky, Dec 16 2008 *) (* Start from Eric W. Weisstein, Sep 21 2017 *) 3*2^Range[0, 35] - 2 LinearRecurrence[{3, -2}, {1, 4}, 36] CoefficientList[Series[(1+x)/(1-3x+2x^2), {x, 0, 35}], x] (* End *) PROG (MAGMA)[3*2^n-2: n in [1..36]] // Vincenzo Librandi, Nov 22 2010 (PARI) a(n) = 3< 3*2^n -2); # G. C. Greubel, Nov 18 2019 CROSSREFS Cf. A007283, A036563, A131110, A051597, A132776, A001045. Cf. A000918. Cf. A112468, A112739. Cf. A082560, A000079, A232642, A128588. Sequence in context: A078407 A265054 A099018 * A296953 A266373 A266374 Adjacent sequences:  A033481 A033482 A033483 * A033485 A033486 A033487 KEYWORD nonn,easy,changed AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 27 09:38 EST 2020. Contains 338679 sequences. (Running on oeis4.)