|
|
A033485
|
|
a(n) = a(n-1) + a(floor(n/2)), a(1) = 1.
(Formerly N0236)
|
|
32
|
|
|
1, 2, 3, 5, 7, 10, 13, 18, 23, 30, 37, 47, 57, 70, 83, 101, 119, 142, 165, 195, 225, 262, 299, 346, 393, 450, 507, 577, 647, 730, 813, 914, 1015, 1134, 1253, 1395, 1537, 1702, 1867, 2062, 2257, 2482, 2707, 2969, 3231, 3530, 3829, 4175, 4521, 4914, 5307, 5757
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Sequence gives the number of partitions of 2n into "strongly decreasing" parts (see the function s*(n) in the paper by Bessenrodt, Olsson, and Sellers); see the example in A040039.
a(A036554(n)) is even, a(A003159(n)) is odd. - Benoit Cloitre, Oct 23 2002
Partial sums of the sequence a(1)=1, a(1), a(1), a(2), a(2), a(3), a(3), a(4), a(4), a(5), a(5), a(6), ... example : a(1) = 1, a(2) = 1+1 = 2, a(3) = 1+1+1 = 3, a(4) = 1+1+1+2 = 5, a(5) = 1+1+1+2+2 = 7, ... - Philippe Deléham, Jan 02 2004
The number of odd numbers before the n-th even number in this sequence is A003156(n). - Philippe Deléham, Mar 27 2004
|
|
REFERENCES
|
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
|
|
LINKS
|
T. D. Noe, Table of n, a(n) for n=1..1000
J. Arkin, Problem H-102: Gone but not forgotten, Fibonacci Quarterly, Vol. 9 (1971), page 135.
Christine Bessenrodt, Jorn B. Olsson, and James A. Sellers, Unique path partitions: Characterization and Congruences, arXiv:1107.1156 [math.CO], 2011-2012.
Philippe Deléham, Letter to N. J. A. Sloane, Apr 20 1998
|
|
FORMULA
|
Conjecture: lim_{n->infinity} a(2n)/a(n)*log(n)/n = c = 1.64.... and a(n)/A(n) is bounded where A(n)=1 if n is a power of 2, otherwise A(n)=sqrt(n)*Product_{k<log_2(n)} n/2^k/log(n/2^k)). - Benoit Cloitre, Jan 26 2003
G.f.: A(x) satisfies x + (1+x)*A(x^2) = (1-x)*A(x). a(n) modulo 2 = A035263(n). - Philippe Deléham, Feb 25 2004
G.f.:(1/2)*(((1-x)*Product_{n>=0}(1-x^(2^n)))^(-1)-1). a(n) modulo 4 = A007413(n). - Philippe Deléham, Feb 28 2004
Sum_{k=1..n} a(k) = (a(2n+1)-1)/2. - Philippe Deléham, Mar 18 2004
|
|
MAPLE
|
a:= proc(n) option remember;
`if`(n<2, n, a(n-1)+a(iquo(n, 2)))
end:
seq(a(n), n=1..60); # Alois P. Heinz, Dec 16 2019
|
|
MATHEMATICA
|
b[1]=1; b[n_] := b[n]=Sum[b[k], {k, 1, n/2}]; Table[b[n], {n, 3, 105, 2}] (* Robert G. Wilson v, Apr 22 2001 *)
|
|
PROG
|
(PARI) a(n)=if(n<2, 1, a(floor(n/2))+a(n-1))
(Haskell)
import Data.List (transpose)
a033485 n = a033485_list !! (n-1)
a033485_list = 1 : zipWith (+)
a033485_list (concat $ transpose [a033485_list, a033485_list])
-- Reinhard Zumkeller, Nov 15 2012
(MAGMA) [n le 1 select 1 else Self(n-1) + Self(Floor(n/2)) : n in [1..60]]; // Vincenzo Librandi, Nov 20 2015
|
|
CROSSREFS
|
Cf. A040039. Also half of A000123 (with first term omitted).
Cf. A022907.
Sequence in context: A103232 A062684 A341912 * A026811 A001401 A008628
Adjacent sequences: A033482 A033483 A033484 * A033486 A033487 A033488
|
|
KEYWORD
|
nonn,nice,easy
|
|
AUTHOR
|
N. J. A. Sloane. This was in the 1973 "Handbook", but was then dropped from the database. Resubmitted by Philippe Deléham. Entry revised by N. J. A. Sloane, Jun 10 2012
|
|
STATUS
|
approved
|
|
|
|