login
A266374
G.f. = b(2)*b(6)/(3*x^6-2*x^5-2*x+1), where b(k) = (1-x^k)/(1-x).
2
1, 4, 10, 22, 46, 96, 198, 404, 822, 1670, 3394, 6896, 14006, 28444, 57762, 117302, 238214, 483752, 982374, 1994940, 4051198, 8226918, 16706698, 33926888, 68896534, 139910644, 284121530, 576975702, 1171685086, 2379382576, 4831896838, 9812304804, 19926196422
OFFSET
0,2
COMMENTS
This is the Poincaré series [or Poincare series] for the quasi-Lannér diagram QL4_13 - see Tables 7.6, 7.7 and 7.8 in Maxim Chapovalov, Dimitry Leites and Rafael Stekolshchik (2009), or equivalently Tables 5 and 6 in the shorter version, Maxim Chapovalov, Dimitry Leites and Rafael Stekolshchik (2010).
LINKS
Maxim Chapovalov, Dimitry Leites, and Rafael Stekolshchik, The Poincaré series [or Poincare series] of the hyperbolic Coxeter groups with finite volume of fundamental domains, arXiv:0906.1596 [math.RT], 2009.
Maxim Chapovalov, Dimitry Leites, and Rafael Stekolshchik, The Poincaré series [or Poincare series] of the hyperbolic Coxeter groups with finite volume of fundamental domains, Journal of Nonlinear Mathematical Physics 17.supp01 (2010), 169-215.
MAPLE
gf:= b(2)*b(6)/(3*x^6-2*x^5-2*x+1):
b:= k->(1-x^k)/(1-x):
a:= n-> coeff(series(gf, x, n+1), x, n):
seq(a(n), n=0..40);
MATHEMATICA
b[k_] := (1 - x^k)/(1 - x); CoefficientList[Series[b[2] b[6]/(3 x^6 - 2 x^5 - 2 x + 1), {x, 0, 40}], x] (* Bruno Berselli, Dec 28 2015 *)
PROG
(Magma) /* By definition: */ m:=40; R<x>:=PowerSeriesRing(Integers(), m); b:=func<k|(1-x^k)/(1-x)>; Coefficients(R!(b(2)*b(6)/(3*x^6-2*x^5-2*x+1))); // Bruno Berselli, Dec 29 2015
CROSSREFS
Cf. similar sequences listed in A265055.
Sequence in context: A033484 A296953 A266373 * A008267 A056112 A118430
KEYWORD
nonn,easy
AUTHOR
Alois P. Heinz, Dec 28 2015
STATUS
approved